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UNIFORM CONVERGENCE VIA PRECONDITIONING

RELJA VULANOVIĆ AND THÁI ANH NHAN

Abstract. The linear singularly perturbed convection-diffusion problem in one dimension is

considered and its discretization on the Shishkin mesh is analyzed. A new, conceptually simple
proof of pointwise convergence uniform in the perturbation parameter is provided. The proof is
based on the preconditioning of the discrete system.
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1. Introduction

We consider the following one-dimensional singularly perturbed problem of con-
vection-diffusion type,

(1) Lu := −εu′′ − b(x)u′ + c(x)u = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

with a small positive perturbation parameter ε and C1[0, 1]-functions b, c, and f ,
where b and c satisfy

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ I := [0, 1].

It is well known, see [6, 9] for instance, that (1) has a unique solution u in C3(I),
which in general has an exponential boundary layer near x = 0.

Singular perturbation problems arise in various applications, see [3, 4]. Typical
of them are boundary and/or interior layers, regions whose size decreases as ε → 0
and where the solution changes abruptly. This is why these problems require special
numerical methods [5, 10, 4, 12, 7]. One of the most popular methods is to use
an appropriate finite-difference scheme on the layer-adapted meshes of Shishkin
[10, 4, 12, 7] or Bakhvalov [13, 12, 7] types.

We consider here the standard upwind discretization of (1) on the Shishkin mesh
withN mesh steps. It is shown in [11] that for the matrix of the resulting system the
condition number in the maximum norm is of magnitude O(ε−1(N/ lnN)2). Since
this is unsatisfactory when ε → 0, a simple preconditioning is proposed in the same
paper. This behavior of the condition number is contrasted in [11] to that of the
singularly perturbed reaction-diffusion problem, which can be described as (1) with
b ≡ 0 and c > 0 on I. When the reaction-diffusion problem is discretized using the
standard central scheme on the Shishkin mesh, there is no need for preconditioning
because the condition number behaves like O((N/ lnN)2).

We note that there is another difference between the two types of the singularly
perturbed problems, viz. the difference in the proofs of ε-uniform convergence of
the numerical solution to the discretized continuous solution. One of the ways to
prove that a finite-difference discretization yields ε-uniform convergence is to use the
following principle, which originated from non-perturbed problems (cf. [2, 13, 5]):
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Principle 1. ε-uniform stability and ε-uniform consistency imply ε-uniform con-

vergence.

Moreover, ε-uniform pointwise convergence is desired when solving singular pertur-
bation problems. For reaction-diffusion problems, this can be achieved by using the
following version ([13]) of the above principle:

Principle 2. ε-uniform stability and ε-uniform consistency, both in the maximum

norm, imply ε-uniform pointwise convergence.

However, Principle 2 does not work for convection-diffusion problems (1) because
ε-uniform pointwise consistency is not present, although it is easy to show that the
upwind scheme is ε-uniformly stable in the maximum norm. For these problems,
ε-uniform consistency can be proved in a discrete L1 norm and this is why the
proofs based on Principle 1 have to rely on some kind of hybrid stability inequality
[5, 1, 8, 7], an approach that typically involves the discrete Green’s function. Other
ε-uniform convergence proofs also exist, like those that use barrier functions [10, 4,
12, 7].

Our main result is that we show that essentially the same preconditioning (we
appropriately modify the method from [11]), which eliminates the difference in
the condition numbers of simple finite-difference discretizations for the convection-
diffusion and reaction-diffusion problems, can also be used to eliminate the differ-
ence in the proofs of ε-uniform pointwise convergence for these two problem types.
In other words, a suitable preconditioning technique enables the use of Principle 2
for the convection-diffusion problem. Using this approach, we prove an almost (up
to logarithmic factors) first-order pointwise ε-uniform convergence for the upwind
scheme discretizing the problem (1) on the Shishkin mesh. This result, however, is
not the main contribution of this paper, because the same has already been proved
elsewhere (see the above references). Rather, we feel that the main contribution
is this conceptually simple proof which points out that there is a connection be-
tween conditioning and ε-uniform pointwise convergence for convection-diffusion
problems.

The rest of the paper is organized as follows. We give the properties of the con-
tinuous solution in Section 2. Then, in Section 3, we introduce the finite-difference
scheme on the Shishkin mesh and discuss the conditioning of the discrete problem.
Section 4 provides the proof of ε-uniform pointwise convergence. Finally, some
concluding remarks are given in Section 5.

2. Properties of the continuous solution

The solution u of (1) can be decomposed into the smooth and boundary-layer
parts. We present here Linß’s [7, Theorem 3.48] version of such a decomposition:

(2) u(x) = s(x) + y(x),

(3) |s(k)(x)| ≤ C
(

1 + ε2−k
)

, |y(k)(x)| ≤ Cε−ke−βx/ε,

x ∈ I, k = 0, 1, 2, 3.

Above and throughout the paper, C denotes a generic positive constant which is
independent of ε. For the construction of the function s, see [7], since the details
are not of interest here. As for y, it solves the problem

(4) Ly(x) = 0, x ∈ (0, 1), y(0) = −s(0), y(1) = 0.

It is important to note that y satisfies a homogeneous differential equation. We
shall use this fact later on in the paper.
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3. The discrete problem and conditioning

We first define a finite-difference discretization of the problem (1) on a general
mesh IN with mesh points xi, i = 0, 1, . . . , N , such that 0 = x0 < x1 < · · · < xN =
1. Throughout the rest of the paper, the constants C are also independent of N .

Let hi = xi − xi−1, i = 1, 2, . . . , N , and ~i = (hi + hi+1)/2, i = 1, 2, . . . , N − 1.
Mesh functions on IN are denoted by WN , UN , etc. If g is a function defined
on I, we write gi instead of g(xi) and gN for the corresponding mesh function.
Any mesh function WN is identified with an (N + 1)-dimensional column vector,
WN = [WN

0 ,WN
1 , . . . ,WN

N ]T , and its maximum norm is given by
∥

∥WN
∥

∥ = max
0≤i≤N

|WN
i |.

For the matrix norm, which we also denote by ‖ · ‖, we take the norm subordinate
to the above maximum vector norm.

We discretize the problem (1) on IN using the upwind finite-difference scheme:

UN
0 = 0,

(5) LNUN
i := −εD′′UN

i − biD
′UN

i + ciU
N
i = fi, i = 1, 2, . . . , N − 1,

UN
N = 0,

where

D′′WN
i =

1

~i

(

WN
i+1 −WN

i

hi+1
−

WN
i −WN

i−1

hi

)

,

and

D′WN
i =

WN
i+1 −WN

i

hi+1
.

The linear system (5) can be written down in matrix form,

(6) ANUN = f̂N ,

where AN = [aij ] is a tridiagonal matrix with a00 = 1 and aNN = 1 being the

only nonzero elements in the 0th and Nth rows, respectively, and where f̂N =
[0, f1, f2, . . . , fN−1, 0]

T .
It is easy to see that AN is an L-matrix, i.e., aii > 0 and aij ≤ 0 if i 6= j, for all

i, j = 0, 1, . . . , N . The matrix AN is also inverse monotone, which means that it is
non-singular and that A−1

N ≥ 0 (inequalities involving matrices and vectors should
be understood component-wise), and therefore an M -matrix (inverse monotone L-
matrix). This can be proved using the following M -criterion, see [2] for instance.

Theorem 1. Let A be an L-matrix and let there exist a vector w such that w > 0
and Aw ≥ γ for some positive constant γ. A is then an M -matrix and it holds that

‖A−1‖ ≤ γ−1‖w‖.

To see that AN is an M -matrix, just set wi = 2− xi, i = 0, 1, . . . , N in Theorem
1 to get that ANw ≥ min{1, β}. This also implies that the discrete problem (6) is
stable uniformly in ε,

(7) ‖A−1
N ‖ ≤

2

min{1, β}
≤ C.

Of course, the system (6) has a unique solution UN .
From this point on, we take the standard Shishkin mesh for the discretiza-

tion mesh IN . However, our results equally hold true for the slightly generalized
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Shishkin mesh considered in [16]. Let N be even and let J = N/2. Let also
L = lnN and let

σ = min

{

1

2
,
aεL

β

}

, a ≥ 2.

The Shishkin mesh is constructed by forming a fine equidistant mesh with J mesh
steps of size h in the interval [0, σ] and a coarse equidistant mesh with J mesh steps
of size H in [σ, 1]. We only consider the case when σ = aεL/β, since N is otherwise
unrealistically large. We have that

h =
σ

J
≤ Cε

L

N
and H =

1− σ

J
≤ CN−1,

and we define ~ = (h+H)/2.
When the discrete problem (5) is formed on the Shishkin mesh, it is shown in

[11] that the condition number of AN ,

κ(AN ) := ‖A−1
N ‖‖AN‖,

satisfies the following sharp estimate:

κ(AN ) ≤ C
N2

εL2
.

Therefore, the system is ill-conditioned when ε → 0. This unpleasant behav-
ior is eliminated in [11] using the preconditioning by the diagonal matrix D :=
[diag(AN )]−1. When the system (5) is multiplied by D, the resulting matrix DAN

satisfies

‖DAN‖ ≤ C and ‖(DAN )−1‖ ≤ C
N2

L
,

so that

(8) κ(DAN ) ≤ C
N2

L
.

Note, however, that the matrix DAN no longer satisfies that ‖(DAN )−1‖ ≤ C, thus
the original stability estimate ‖A−1

N ‖ ≤ C in (7) is not preserved. We modify below
the preconditioning by a diagonal matrix so that the same estimate as in (8) holds
true, while the stability of type (7) is retained.

Let M = diag (m0,m1, . . . ,mN ) be a diagonal matrix with the entries

m0 = 1, mi =
h

H
, i = 1, 2, . . . J − 1, and mi = 1, i = J, J + 1, . . . , N.

When the system (6) is multiplied by M , this is equivalent to multiplying the
equations 1, 2, . . . , J − 1 of the system (5) by h/H . The modified system is

(9) ÃNUN = Mf̂N ,

where ÃN = MAN . Let the entires of ÃN be denoted by ãij , the nonzero ones
being

li := ãi−1,i =



































−
ε

hH
, 1 ≤ i ≤ J − 1,

−
ε

h~
, i = J,

−
ε

H2
, J + 1 ≤ i ≤ N − 1,



UNIFORM CONVERGENCE VIA PRECONDITIONING 351

ri := ãi,i+1 =







































−
ε

hH
−

bi
H

, 1 ≤ i ≤ J − 1,

−
ε

H~
−

bi
H

, i = J,

−
ε

H2
−

bi
H

, J + 1 ≤ i ≤ N − 1,

and

di := ãii =











































1, i = 0

−li − ri +
h

H
ci, 1 ≤ i ≤ J − 1,

−li − ri + ci, J ≤ i ≤ N − 1,

1, i = N.

It is easy to see that ÃN is an L-matrix. The next lemma shows that ÃN is an
M -matrix and that the modified discretization (9) is stable uniformly in ε.

Lemma 1. The matrix ÃN of the system (9) satisfies

∥

∥

∥
Ã−1

N

∥

∥

∥
≤ C.

Proof. We construct a vector v = [v0, v1, . . . , vN ]T such that

(a) vi ≥ δ, i = 0, 1, . . . , N , where δ is a positive constant independent of both
ε and N ,

(b) vi ≤ C, i = 0, 1, . . . , N ,
(c) livi−1 + divi + rivi+1 ≥ δ, i = 1, 2, . . . , N − 1.

Then, according to Theorem 1,

‖Ã−1
N ‖ ≤ δ−1‖v‖ ≤ C.

The vector v can be constructed as follows:

vi = α−Hi+ λmin{(1 + ρ)J−i, 1},

where α and λ are fixed positive constants and ρ = βH/ε. This construction is
motivated by the proof of Lemma 4 in [11].

Since vi ≥ α−HN , we see that there exists a constant α such that α ≤ C and
that condition (a) is satisfied. Then, because of vi ≤ α + λ, condition (b) holds
true if we show that λ ≤ C. We do this next as we verify condition (c).

When 1 ≤ i ≤ J − 1, we have vj = α−Hj + λ, j = i− 1, i, i+ 1, and

livi−1 + divi + rivi+1 = (li + di + ri)vi + liH − riH

=
h

H
civi −

ε

h
+

ε

h
+ bi

≥ β.
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For i = J , condition (c) is verified as follows:

lJvJ−1 + dJvJ + rJvJ+1 = cJvJ + lJH − rJ

(

H +
λρ

1 + ρ

)

≥ −rJ
λρ

1 + ρ
+ (lJ − rJ )H

=

(

ε

~H
+

bJ
H

)

λρ

1 + ρ
−

εH

h~
+

ε

~
+ bJ

≥
ε+ β~

~H
·

λβH

ε+ βH
−

εH

h~
+ β

=
1

~

(

ε+ β~

ε+ βH
βλ−

εH

h

)

+ β

≥
1

~

(

βλ

2
−

εH

h

)

+ β

≥ β,

where in the last step we choose λ so that λ ≤ C and

βλ

2
≥

εH

h
.

This is possible to do because

εH

h
≤

C

L
≤ C.

Finally, if J + 1 ≤ i ≤ N − 1, we have

livi−1 + divi + rivi+1 = civi + liH − riH + li

[

λ

(1 + ρ)i−1−J
−

λ

(1 + ρ)i−J

]

+ ri

[

λ

(1 + ρ)i+1−J
−

λ

(1 + ρ)i−J

]

≥ bi +
ρ(1 + ρ)li − ρri
(1 + ρ)i+1−J

λ

≥ β +
(li − ri + liρ)ρ

(1 + ρ)i+1−J
λ

= β +

(

bi
H

−
β

H

)

λρ(1 + ρ)J−i−1

≥ β.

�

By examining the elements of the matrix ÃN , we see that

‖ÃN‖ ≤ C
N2

L
.

When we combine this with Lemma 1, we get the following result.

Theorem 2. The matrix ÃN of the system (9) satisfies

κ(ÃN ) ≤ C
N2

L
.

To conclude this section, we re-iterate that both discrete systems (6) and (9) are
stable uniformly in ε. Their corresponding stability inequalities are

(10) ‖WN‖ ≤ ‖A−1
N ‖‖ANWN‖
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and

(11) ‖WN‖ ≤ ‖Ã−1
N ‖‖ÃNWN‖,

where both ‖A−1
N ‖ and ‖Ã−1

N ‖ are bounded from above by a constant independent
of ε.

4. Uniform convergence

Let τi, i = 1, 2, . . . , N−1, be the consistency error of the finite-difference operator
LN ,

τi = τi[u] := LNui − (Lu)i,

that is,
τi = LNui − fi = [AN (uN − UN )]i.

Convergence uniform in ε would follow from (10) if we could show that

(12) |τi| → 0 uniformly in ε when N → ∞.

However, this does not hold true, as the following simple numerical experiment
indicates.

Consider the test problem taken from [7, p.1],

−εu′′ − u′ = 1, x ∈ (0, 1), u(0) = u(1) = 0,

where we know the exact solution. Table 1 clearly shows that (12) is not satisfied.

Table 1. The maximum norm of the consistency error ANuN − f̂N .

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

1.e-2 1.33e+1 9.71e+0 6.42e+0 3.95e+0 2.32e+0 1.32e+0

1.e-3 1.33e+2 9.71e+1 6.42e+1 3.95e+1 2.32e+1 1.32e+1

1.e-4 1.33e+3 9.71e+2 6.42e+2 3.95e+2 2.32e+2 1.32e+2

1.e-5 1.33e+4 9.71e+3 6.42e+3 3.95e+3 2.32e+3 1.32e+3

1.e-6 1.33e+5 9.71e+4 6.42e+4 3.95e+4 2.32e+4 1.32e+4

1.e-7 1.33e+6 9.71e+5 6.42e+5 3.95e+5 2.32e+5 1.32e+5

1.e-8 1.33e+7 9.71e+6 6.42e+6 3.95e+6 2.32e+6 1.32e+6

However, for the preconditioned system (9), the consistency error is

τ̃i[u] =











h

H
τi[u], 1 ≤ i ≤ J − 1,

τi[u], J ≤ i ≤ N − 1,

and it tends to 0 uniformly in ε when N → ∞, as Table 2 indicates. We prove this
in the following lemma.

Table 2. The maximum norm of the preconditioned consistency

error ÃNuN −Mf̂N .

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

1.e-2 1.e+0 8.91e-1 6.97e-1 4.99e-1 3.35e-1 2.16e-1

1.e-3 9.38e-1 8.23e-1 6.35e-1 4.48e-1 2.97e-1 1.88e-1

1.e-4 9.32e-1 8.17e-1 6.29e-1 4.43e-1 2.93e-1 1.86e-1

1.e-5 9.32e-1 8.16e-1 6.29e-1 4.43e-1 2.93e-1 1.86e-1

1.e-6 9.32e-1 8.16e-1 6.29e-1 4.43e-1 2.93e-1 1.85e-1

1.e-7 9.32e-1 8.16e-1 6.29e-1 4.43e-1 2.93e-1 1.85e-1

1.e-8 9.32e-1 8.16e-1 6.29e-1 4.43e-1 2.93e-1 1.85e-1



354 R. VULANOVIĆ AND T. NHAN

Lemma 2. The following estimate holds true for all i = 1, 2, . . . , N − 1:

|τ̃i[u]| ≤ CN−1L2.

Proof. By Taylor’s expansion we have that

(13) |τi[u]| ≤ Chi+1(ε‖u
′′′‖i + ‖u′′‖i),

where ‖g‖i := maxxi−1≤x≤xi+1
|g(x)| for any C(I)-function g. We use the decom-

position (2) to get

τ̃i[u] = τ̃i[s] + τ̃i[y].

Then (13) and the derivative-estimates of s, given in (3), immediately imply that

|τ̃i[s]| ≤ CN−1

and therefore the following remains to be proved:

(14) |τ̃i[y]| ≤ CN−1L2.

For 1 ≤ i ≤ J − 1, we use (13) again, together with the derivative-estimates of
y, see (3):

|τ̃i(y)| ≤ C
h2

H
(ε‖y′′′‖i + ‖y′′‖i) ≤ C

h2

H
ε−2 ≤ CN−1L2.

Therefore, (14) is proved in this case.
When J + 2 ≤ i ≤ N − 1, (13) and (3) give

|τ̃i[y]| ≤ CH(ε‖y′′′‖i + ‖y′′‖i) ≤ C
H

ε2
e−βxi−1/ε ≤ C

H

ε2
e−β(σ+H)/ε

≤ CN
H2

ε2
e−βH/εe−βσ/ε.

The estimate (14) follows from here because

H2

ε2
e−βH/ε ≤ C

and because the definition of σ and a ≥ 2 imply that

e−βσ/ε ≤ N−2.

We finally prove (14) for i = J, J + 1. In this case, we use the fact that Ly = 0
to work with

|τ̃i[y]| = |τi[y]| ≤ Pi +Qi + ci|yi|,

where

Pi = ε|D′′yi| and Qi = bi|D
′yi|.

We immediately have that

ci|yi| ≤ Ce−βxi/ε ≤ Ce−βσ/ε ≤ CN−2.

As for Pi and Qi, it holds true that

Pi ≤ ~
−1
i ε · 2‖y′‖i ≤ CNe−β(σ−h)/ε ≤ CN−1

and

Qi ≤ CH−1‖y‖i ≤ CNe−β(σ−h)/ε ≤ CN−1.

This technique can be found in [15]. �
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Note that when the above proof technique is applied to the consistency error τi,
this quantity cannot be estimated uniformly in ε. We can only get that

|τi| ≤ C
L

εN
.

It is because we multiply equations 1, 2,. . . , J − 1 of the system (5) by h/H that
we get the extra ε-factor needed for the ε-uniform consistency on the fine part of
the mesh.

When Lemmas 1 and 2 are combined, which amounts to the use of Principle 2,
that is, of the stability inequality (11), we obtain the following result.

Theorem 3. The solution UN of the discrete problem (6) on the Shishkin mesh

satisfies
∥

∥UN − uN
∥

∥ ≤ CN−1L2,

where u is the solution of the continuous problem (1).

5. Concluding remarks

The result of Theorem 3 is the same as in [10, Theorem 4 in Chapter 8], proved
by the barrier-function technique for the case c ≡ 0, but with the mesh parameter
a > 1. A finer, but more complicated, analysis in [4, Theorem 3.6] improves the
above estimate to

(15)
∥

∥UN − uN
∥

∥ ≤ CN−1L,

with a ≥ 1 and still for c ≡ 0. The same result as in (15) is proved in [7, Chapter 4]
for the general problem (1), by using a finite-element approach to the discretization
scheme, which is slightly different from LN , having hi+1 instead of ~i in D′′.

Since WN = (A−1
N M−1)(MANWN ), the stability inequality (11) can be repre-

sented as

(16) ‖WN‖ ≤ ‖A−1
N ‖′M‖ANWN‖M ,

where for a matrix B, ‖B‖′M = ‖BM−1‖, and ‖WN‖M = ‖MWN‖. Note that
the matrix norm ‖ · ‖′M is not induced by the vector norm ‖ · ‖M (which is why we
denote them differently), but the two norms are consistent in the sense that

‖BWN‖M ≤ ‖B‖′M‖WN‖M .

The inequality (16) is a stability inequality of hybrid nature, having different vector
norms on the two sides. However, the vector norm ‖ · ‖M is still essentially a max-
imum norm and this is completely different from the hybrid stability inequalities
used in [5, 1, 8, 7], which have a discrete L1 norm on the right-hand side. More-
over, these hybrid stability inequalities are derived by using the discrete Green’s
function, which we do not do here.

In conclusion, although the method presented here gives a slightly weaker result
in some cases, it provides a straightforward proof, based on a simple principle, of
ε-uniform pointwise convergence for the solution of the standard upwind scheme
discretizing the singularly perturbed convection-diffusion problem (1). It is even
more interesting that the proof is enabled by the preconditioning of the system
arising from the discretization. Whether this can be used as a general approach
when proving ε-uniform pointwise convergence for other types of singular pertur-
bation problems, including multidimensional ones, remains to be seen, but the
generalization to the semilinear problem of type (1) (with c = c(x, u), cu ≥ 0) is
straightforward.
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