
Numerical Solutions of Models for Glucose and

Insulin Levels in Critically Ill Patients

A thesis submitted

by

Anh Thai Nhan (B.Sc.)

to

The School of Mathematics, Statistics and Applied Mathematics,

National University of Ireland, Galway

in fulfilment of the requirements for the degree of

Master of Science

September 2011

Thesis Supervisor: Dr. Niall Madden

Head of School: Dr. Ray Ryan

Abstract

This thesis is concerned with the numerical solution of mathematical models for glucose and insulin

levels in critically ill patients. These models present several difficulties that make computing accurate

solutions efficiently a nontrivial challenge. These difficulties include that the differential equations are

stiff, have discontinuous data, and have highly non-uniform dynamics. The numerical methods we use

are all examples of classical one-step Runge-Kutta methods. We show how to choose from these methods

the ones that are most suited to problems with discontinuous data. We then show how so-called implicit

methods can be implemented to generate stable solutions to stiff problems. Finally, in the context of

using a Dynamic Bayesian Network to simulate glucose and insulin levels in intensive care unit patients

where the glucoregulatory system are very fast and unpredictable, we propose a time stepping control

algorithm that allows the stepsize to adapt to changes in the model dynamics.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 3

1.3 Experimental Data . 4

1.4 Acknowledgements . 4

2 Numerical Methods for IVPs 5

2.1 Introduction to IVPs . 5

2.2 One-step methods for IVPs . 8

2.2.1 Euler’s Method . 8

2.2.2 Euler’s method for systems of IVPs . 10

2.2.3 Analysis of Euler’s Method . 12

2.2.4 Consistency and Convergence . 13

2.2.5 Runge-Kutta 2 . 15

2.2.6 Runge-Kutta 3 . 18

2.2.7 Runge-Kutta 4 . 20

2.2.8 Implementation of Runge-Kutta Methods in Matlab 22

2.3 Problems with discontinuities . 23

2.3.1 Preliminary examples . 23

2.3.2 Recovering the rate of convergence . 25

i

CONTENTS CONTENTS

3 The ICU Minimal Model 27

3.1 The ICU-MM . 27

3.1.1 A Mathematical Model . 27

3.1.2 Numerical Solution of the ICU-MM . 31

3.2 Adaptive Uniform Methods . 33

3.2.1 Introduction . 33

3.2.2 Uniform stepsize selection algorithm . 34

3.2.3 Comparison with Euler’s method by halving the stepsize 35

3.2.4 Applying the algorithm to the ICU-MM . 36

3.3 Conclusion . 36

4 Solution of Stiff Diff Eqns 38

4.1 Stiff Differential Equations . 39

4.1.1 Examples . 40

4.2 Nonlinear Functions . 41

4.2.1 Iterative methods for solving systems of nonlinear equations 42

4.3 The Implicit Euler Method . 47

4.4 New Model for Glucose Insulin . 49

4.4.1 Numerical Solution using the Explicit Euler Method 50

4.4.2 Numerical Solution using the Implicit Euler Method 51

4.5 Conclusion . 52

5 Adaptive Time Stepping 54

5.1 Adaptive Time-stepping Algorithm . 54

5.1.1 Algorithm pseudo-code and user-chosen parameters 55

5.2 Van der Pol’s Equation . 56

5.2.1 Overview . 56

5.2.2 Numerical Result . 57

ii

CONTENTS CONTENTS

5.2.3 Tuning the parameters . 59

5.3 The Updated Model . 64

5.3.1 Parameters and Initial Conditions . 64

5.4 Numerical Results . 65

5.4.1 Some observations . 65

5.4.2 Turning the user-chosen parameters . 69

5.4.3 A variation on the adaptive algorithm . 70

5.5 Conclusion . 71

6 Conclusions 72

iii

List of Figures

2.1 True solution and Euler’s method with N = 8 for Example 2.5. 10

2.2 True solution and Euler’s method with N = 8 for Example 2.6. 12

2.3 The graph of Example 2.7 using Improved Euler Method. 18

2.4 A log-log plot of the errors in numerical solution for various N 22

2.5 The graph of y′(t) (left) and y(t) (right) on [0, 1]. 23

2.6 The rates of convergence in Example 2.9. 25

3.1 Observed glucose (top), the intravenous rate of glucose (middle) and the intravenous rate

of insulin (bottom). 31

3.2 A sample benchmark solution of component G with updated values. 33

4.1 The graph of Example 4.2 using Euler’s method. 41

4.2 The surfaces z = f1(x1, x2) and z = f2(x1, x2). 45

4.3 Example 4.4 using Explicit Euler Method (left) and Implicit Euler Method (right). 48

4.4 The graph of the computed solution to Example 4.2 using the Implicit Euler Method. . . 49

4.5 The solution of five components. 50

4.6 A log-log plot of the errors shown in Table 4.7. 51

4.7 A log-log plot of the errors shown in Table 4.8. 52

5.1 Solutions to (5.1) . 57

5.2 Euler’s Method with uniform steps applied to (5.1) with N = 165. 58

5.3 The numerical solution to (5.1) obtained by the adaptive algorithm with N = 165. 59

iv

LIST OF FIGURES LIST OF FIGURES

5.4 Errors in the computed solution using the adaptive algorithm for (5.1). 60

5.5 A log-log plot of the errors shown in Table 5.7. 62

5.6 The approximate solution (top), the stepsizes (middle) and the corresponding errors (bot-

tom) using the adaptive algorithm. 63

5.7 Predicted and observed blood glucose levels for t ∈ [663, 4680]. 66

5.8 The G1 obtained by using Euler’s Method with N = 20443 uniform steps. 67

5.9 The G1 obtained by using the adaptive algorithm with N = 20443. 67

5.10 The graph of solutions of each component in (5.2). 68

5.11 A log-log plot of the errors shown in Table 5.12. 69

5.12 A log-log plot of the errors shown in Table 5.13. 70

5.13 A log-log plot of the errors shown in Table 5.14. 71

v

List of Tables

2.1 Errors in the numerical solution obtained by applying Euler’s method to Example 2.5 . . 10

2.2 Errors in the numerical solution obtained by applying Euler’s method to Example 2.6 . . 11

2.3 Rate of convergence of Euler’s method for Example 2.5 . 15

2.4 Butcher tableau form. 15

2.5 The Improved (left) and Modified (right) Euler Methods 16

2.6 Errors in the solutions to Example 2.5 using the Improved and Modified Euler’s Methods. 17

2.7 Errors in the numerical solution obtained by applying the Improved Method to Example 2.7 18

2.8 Butcher tableau for general RK3. 19

2.9 Four Runge-Kutta 3 methods. 19

2.10 Errors in the numerical solution to Example 2.5 using the Heun and Classical Methods. . 20

2.11 General RK4 Method. 20

2.12 The classic RK4 Method. 21

2.13 Errors in the computed solution obtained by applying classical methods to Example 2.8 . 21

2.14 Errors and rate of convergence for Example 2.9 using Improved Euler and Classical Methods. 24

2.15 Errors and rate of convergence for Example 2.9 using the Modified Euler and Heun Methods. 25

2.16 Errors and rate of convergence applying the Improved and Classical Methods with the

adjusted stepsize to Example 2.9. 26

3.1 Description of parameters in the ICU-MM . 29

3.2 Observed Glucose Levels . 30

3.3 Initial values and the values of parameters in the ICU-MM 32

vi

LIST OF TABLES LIST OF TABLES

3.4 Errors in the numerical solution to the ICU-MM with the data for Patient 23. 33

3.5 Adaptive uniform algorithm for Patient 23 with a tolerance of ϵ = 10−2. 36

4.1 Errors in the numerical solution obtained by applying Euler’s method to Example 4.2. . . 41

4.2 The convergence of Newton’s method applied to Example 4.3. 44

4.3 The convergence of the Secant method applied to Example 4.3. 46

4.4 The convergence of Broyden’s method applied to Example 4.3. 47

4.5 Butcher tableau for the Implicit Euler method. 47

4.6 Errors in the numerical solution generated by the Implicit Euler Method applied to Exam-

ple 4.2. 48

4.7 Errors in the numerical solution generated by the explicit Euler method to (4.8). 51

4.8 Errors in the numerical solution obtained by applying the Implicit Euler Method to (4.8). 52

5.1 Errors in the numerical solution to (5.1) obtained using Euler’s method with uniform steps. 57

5.2 Errors in the computed solution obtained by the adaptive algorithm applied to (5.1). . . . 58

5.3 Errors in the computed solution obtained by applying the adaptive algorithm to (5.1) with

q = 0.9, M1 = 2 and M2 = 0.5. 59

5.4 Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with

various q. 60

5.5 Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with

various values of M1. 61

5.6 Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with

various values of M2. 61

5.7 Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with

q = 0.9, M1 = 1.5 and M2 = 0.9. 62

5.8 Errors in the computed solution to (5.1) obtained by using Euler’s Method using uniform

steps. 63

5.9 Initial values for (5.2). 64

5.10 Values of FG and FI in (5.2). 65

5.11 Values of other parameters in (5.2). 65

vii

LIST OF TABLES LIST OF TABLES

5.12 Errors in the numerical solution to (5.2) using Euler’s Method with uniform steps. 68

5.13 Errors in the computed solution to (5.2) by the adaptive algorithm. 69

5.14 Errors in the computed solution to (5.2) by a variant of the adaptive algorithm. 70

viii

Chapter 1

Introduction

1.1 Motivation

This thesis is a report on my work on designing and analysing numerical methods for simulating solu-

tions to certain initial values problems in such that way that they can be easily incorporated into an

expert system that then tunes the model parameters to a particular case. It is part of a larger project

“Nonlinearity and Uncertainty in Drug Modelling” funded by Science Foundation Ireland. It is a strongly

interdisciplinary, collaborative project, involving Computer Science, Mathematics and Applied Mathe-

matics, with an application in Medical Informatics, as well as having input from clinicians in University

Hospital Galway. There are six core members of the group. Liam O’Callaghan and Petri Piiroinen in

Applied Mathematics are constructing new mathematical models based on initial value differential equa-

tions. Catherine Enright and Michael Madden in Information Technology incorporate these models into a

Dynamic Bayesian Network (DBN) software system that is used to adapt model parameters to individual

patients. However, in order to run the DBN, our colleagues need suitable numerical schemes. My role

has been to design and implement various numerical methods to solve the models in a way that can be

incorporated into the DBN sufficiently.

Ordinary differential equations, particularly initial value problems (IVPs), are the most commonly

used mathematical tool for modelling of the biological processes (see, e.g. [2, 19]). These models can

represent a huge array of phenomena such as population dynamics, infectious diseases, physiological

processes in humans, and the growth of cancerous tumours. Of primary interest in this thesis are models

for the interactions between glucose and insulin in critically ill patients. The models we study in this

thesis are expressed as systems of initial value problems.

In the field of Artificial Intelligence, a Bayesian Network is a type of expert system in which a graphical

probabilistic model is used to determine the most probable state of variables in a network when all the

information required to determine their true state is not available [15, Chap. 14]. It uses a directed acyclic

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

graph to represent the interactions between its variables. When a Bayesian Network is used in a time

series, it is called a Dynamic Bayesian Network (DBN). In the context of differential equations, the DBN

generates tens of thousands of “particles” that represent different possible values for all the differential

equation’s parameters, and then solves the differential equation for each of these. When an observation

is available, which corresponds to knowing the value of the solution a particular point in time, the DBN

then uses Bayes’ theorem to determine the probability that a given particle was the “true” one. The DBN

again generates a new family of particles and restarts the simulation until a new observation is available.

In this way the DBN can recalibrate the model’s parameters. Obviously, the DBN cannot solve differential

equations exactly. Numerical solutions are therefore required. Furthermore, the computational cost in

implementing the DBN is very high since it has to numerically solve for each of the thousands of particles.

Recently, a DBN approach has been used for modeling insulin levels in patients in intensive care

unit [5]. As described in [5], the DBN-based framework has been shown to be successful in tackling

problems in which several sources of uncertainty are dominant. More specifically, that paper maps the

Intensive Care Unit-Minimal Model (ICU-MM) developed by Van Herpe et al [20] into a DBN in order

to predict the glucose and insulin interaction levels in ICU patients and also to recalibrate the model

parameters from the population levels. However, there are still some difficulties that need to be overcome.

Firstly, as mentioned above, the implementation of a DBN is expensive. The DBN model sets up the

relationships between every factor that comes from the ICU model and uses a conditional distribution to

predict their values over time. Therefore, as shown in [5] at each time slice, a huge number of computations

takes place. As a result, the DBN requires algorithms for simulating solutions to IVPs that are accurate

but, moreover, highly efficient. In this thesis we consider several ways of doing this. These include the

use of high order schemes, the use of implicit methods which gives a stable solution for even long time

steps, and adaptive schemes to optimise the time step. As we will see, of these the adaptive method is

most suited to the DBN.

Secondly, as discussed in [4]:

The dynamics of a glucoregulatory system are very fast. A DBN which aims to capture these

dynamics would have to be run with time steps of less than 1 minute.

Since the dynamics of the model are not uniform and not known in advance, we are again motivated

to design a technique that can adapt the stepsize to capture the corresponding dynamics efficiently. In

other words, we need an algorithm that automatically allows the use of large steps during periods of slow

change, and small steps during periods of fast change. In this way, significant run time improvements can

be obtained. With the challenges from the DBN implementation and the dynamics of glucoregulatory

system, a need to design a simple and efficient algorithm has been our main goal during the project.

2

1.2. THESIS OUTLINE CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

In the very first stage of my research, my task was to study the numerical solution for the ICU-MM

originally proposed in [1, 10, 20]. This mathematical model is expressed as a system of four nonlinear

initial value differential equations. Therefore, the fundamental and classical numerical methods for solving

IVPs, such as Euler’s method and Runge-Kutta methods, form the core of Chapter 2. In this chapter, we

give a careful analysis of the errors in numerical solutions generated by one-step methods, with particular

attention given to Euler’s method. This is because this error analysis is necessary in order to develop

more sophisticated algorithms in later chapters.

Most classical examples of initial value problems have smooth coefficients. However the IVPs that

come from real world models are based on observed data, which may be discontinuous, or perhaps only

piecewise continuous. This difficulty can lead to reduced accuracy and rates of convergence of some

one-step methods. This scenario is also addressed in Chapter 2 using several examples. By investigating

these, we suggest some numerical methods that should be used for the problems that have discontinuous

data. Furthermore, we recommend a simple non-uniform stepsize technique that fully recovers the order

of accuracy for some methods in which the rate of convergence is adversely affected by the discontinuity.

In Chapter 3 we investigate the ICU-MM model with real patient data, and address some of the

difficulties that arise when solving it numerically. In the second half of the chapter, we introduce a

technique to control the uniform stepsize of the one-step methods based on a prescribed tolerance. The

improvement in terms of computational cost is shown by applying this algorithm to the ICU-MM. It is

considered as a simple application of the error analysis in Chapter 2. This idea is developed for another,

more sophisticated but efficient algorithm in Chapter 5.

In the middle stage of my 18 month Masters project, our team members from Applied Mathematics

proposed an improved model for the glucose and insulin levels in critically ill patients. However, this

new model is much more difficult to solve numerically. For example, the new model divides the total

simulation period into several subperiods, and all of the model parameters may change between periods.

Another considerable challenge is the stiffness of the model. The numerical schemes of Chapter 2 are

all explicit, and as we explain, not appropriate for stiff problems in which the computed solution can

be highly unstable. Thus, Chapter 4 deals with the property of stiffness, and focuses on an implicit

scheme that is stable for stiff problems. The efficiency of the implicit method is shown through the

numerical results we present, in particular the result for the mathematical model of our colleagues from

Applied Mathematics. However, implementing the implicit method requires the solution of a system of

nonlinear equations, so we briefly discuss the iterative methods that are used in our implementation, such

as Newton’s method and Broyden’s method.

As mentioned above, in order to optimise the DBN implementation of glucose models that can take

days to run, a technique that can control the stepsize is needed. In addition, the dynamics of the new

model are not uniform over time, i.e. derivatives change rapidly in some intervals and slowly in other

3

1.3. EXPERIMENTAL DATA CHAPTER 1. INTRODUCTION

intervals. Based on the uniform technique of controlling the stepsize discussed in Chapter 3 and the error

analysis of Euler’s method in Chapter 2, we develop the adaptive non-uniform time stepping algorithm

in Chapter 5. It does not requires a fixed stepsize as with the algorithm in Chapter 3. Instead, this

technique chooses a suitable stepsize at each step depending on the dynamics of the systems. Applying

this scheme, we carefully investigate the numerical results by calibrating the user-chosen parameters in

the adaptive scheme for the latest model that our project members have provided. Furthermore, we also

apply this algorithm to a model based on the classic van der Pol oscillator that presents non-uniform

dynamics over different intervals. Although originally proposed for modelling electrical circuits, it has a

wide range of applications in biology, e.g. [2, Chap. 16]. Chapter 5 concludes with the application of the

adaptive algorithm to the glucose insulin model, which, as described in the recently submitted research

article [4], has been successfully incorporated into the DBN.

1.3 Experimental Data

In our research group’s project, the models and methods have been validated by comparison with exper-

imental data from real patients in the ICU department of University Hospital Galway (UHG). In this

thesis, we give results based on some of this data. In Chapter 3 we use a data set from study [5] we refer

to as Patient 23. This data was collected from the data base archives of UHG. Permission for collecting

this data was given by the Galway Research Ethics Committee, UHG. All records were anonymised and

stored on encrypted drives.

In Chapter 4 and Chapter 5, we use data that was directly collected for this research project, and

which we refer to as Patient 102. This data was measured by two colleagues, Dr Brian Harte and Ms

Anne Mulvey, in June 2010 in UHG. For this specific research, not only glucose levels, but other factors

that affect glucose levels were also measured. These other factors had to be taken into account since

DBN can recalibrate these parameters to an individual patient from the general population-level values.

Again permission for collecting this data was given by the Galway Research Ethics Committee, UHG.

1.4 Acknowledgements

This thesis is based on works supported by the Science Foundation Ireland under Grant No 08/RF-

P/CMS1254. I am grateful to group members Catherine Enright and Michael Madden who have helped

me understand the DBN framework and operation. I am also grateful to other group members Liam

O’Callaghan and Petri Piiroinen for their thorough explanation of their glucose insulin model and param-

eters. I am also indebted to my supervisor Dr. Niall Madden for his constant encouragement, motivation

and helpful advice.

4

Chapter 2

Numerical Methods for Initial Value

Problems

In this chapter we briefly review some theory about initial value differential equations, and the classical

one-step Runge-Kutta (RK) methods used to solve them numerically. We state the important theoretical

results concerning these methods that relate to their accuracy and convergence in Section 2.2.4. Along

with these, we give numerous worked examples. A very compact Matlab code to implement them is

presented in Section 2.2.8. In Section 2.3, we show that some of these methods are not appropriate for

problems with discontinuous coefficients: the accuracy and the rate of convergence is less than that theo-

retically possible for problems with discontinuous data. Finally, in Section 2.3, we describe a nonuniform

step algorithm with which we successfully recover the maximum rate of convergence of some numerical

methods.

2.1 Introduction to Initial Value Problems

For many years mathematical models based on differential equations have been used as effective and

successful tools in order to represent the biological processes in nature (e.g., [2, 13, 19]). One of the

simplest such models is concerned with predator and prey populations. Suppose we can observe the

number of wolves and number of rabbits in a forest. These values will change over time due to interactions

between the wolves and rabbits. Let x(t) be the number of rabbits and y(t) be the number of wolves

at the time t. At the time t0, suppose the number of rabbits is x(t0) = x0, and the number of wolves

is y(t0) = y0 and without predators, assume the prey population grows and, without prey, the predator

population declines. Then, this interacting process can be modeled as

dx

dt
= (a1 − b1y)x,

dy

dt
= (−a2 + b2x)y,

(2.1)

5

2.1. INTRODUCTION TO IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

where a1, a2, b1 and b2 are positive parameters relating to the interaction of wolves and rabbits. The

system of differential equations (2.1) and conditions x(t0) = x0, y(t0) = y0 on the interval [t0, tN] are

called an Initial Value Problem (IVP).

We may suppose that the general form of the differential equation is written as

dy

dt
= f(t, y), for t > t0, (2.2)

with the value of the function y(t) given at t0, i.e., y(t0) = y0. In many cases, such an initial value

problem as (2.2) cannot be solved exactly. Therefore, a numerical solution is needed. The basic idea for

solving (2.2) numerically is to divide the interval of interest into discrete steps of fixed length and find

approximations to the function y at those values of t. That is, we find numerical solutions at t1, . . . , tN

with ti+1 − ti = h > 0.

Before considering numerical schemes for initial value problems, we briefly recall some facts from the

theory of ordinary differential equations. The presentation here is based on [17, Chap. 12].

Definition 2.1. A function f satisfies a Lipschitz Condition (with respect to its second argument)

in the rectangular region D if there is a positive real number L such that

|f(t, u)− f(t, v)| ≤ L|u− v|, (2.3)

for all (t, u) ∈ D and (t, v) ∈ D.

Example 2.1. The function f(t, y) = (t − y)/3 satisfies the Lipschitz condition in R2, because with

(t, u), (t, v) ∈ R2, we have

|f(t, u)− f(t, v)| =
∣∣∣∣ t− u

3
− t− v

3

∣∣∣∣ = ∣∣∣∣−u+ v

3

∣∣∣∣ ≤ 1

3
|u− v|.

So the function f(t, y) = (t− y)/3 satisfies the Lipschitz condition with L = 1/3.

Example 2.2. [17, Exer. 12.1] The function

f(t, y) =
2y

1 + y2

(
1 +

1

e|t|

)
, (2.4)

satisfies a Lipschitz condition; this may be shown as follows. Let us take any x ∈ R, then

|f(t, u)− f(t, v)| =
∣∣∣∣ 2u

1 + u2

(
1 +

1

e|t|

)
− 2v

1 + v2

(
1 +

1

e|t|

)∣∣∣∣ ,
=

∣∣∣∣(1 + 1

e|x|

)(
2u

1 + u2
− 2v

1 + v2

)∣∣∣∣ .
Since

(
1 +

1

e|x|

)
≤ 2 for all x ∈ R, hence

|f(t, u)− f(t, v)| ≤ 2

∣∣∣∣2u(1 + v2)− 2v(1 + u2)

(1 + u2)(1 + v2)

∣∣∣∣
= 4

∣∣∣∣ 1 + uv

(1 + u2)(1 + v2)

∣∣∣∣ |u− v|.

6

2.1. INTRODUCTION TO IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

In addition,
1 + uv

(1 + u2)(1 + v2)
≤ 1, so we get

|f(t, u)− f(t, v)| ≤ 4|u− v|.

Therefore, (2.4) satisfies the Lipschitz condition with Lipschitz constant L = 4.

The following theorem states sufficient conditions on f for the existence of a solution to the ordinary

differential equation (2.2).

Theorem 2.1 (Picard’s Theorem). Suppose that the real-valued function f(t, y) is continuous for t ∈

[t0, tM] and y ∈ [y0 − C, y0 + C]; that |f(t, y0)| ≤ K for t0 ≤ t ≤ tM ; and that f satisfies the Lipschitz

condition (2.3). If

C ≥ K

L

(
eL(tM−t0) − 1

)
,

then (2.2) with initial value y(t0) = y0 has a unique solution on [t0, tM]. Furthermore,

|y(t)− y(t0)| ≤ C, t0 ≤ t ≤ tM .

A very detailed proof can be found in [17, p.312]. We now apply this theorem to some examples.

Example 2.3. Consider the following initial value problem:

dy

dt
= f(t, y) = 2y − 5, with, y(0) = y0 = 3.

In order to apply Picard’s Theorem to show that it has a unique solution on [0,∞), we need to show that

there exists a constant C that satisfies

C ≥ K

L

(
eL(tM−t0) − 1

)
.

Indeed, the function f(t, y) = 2y−5 satisfies the Lipschitz condition with L = 2 as the Lipschitz constant:

|f(t, u)− f(t, v)| = |(2u− 5)− (2v − 5)|,

= |2(u− v)| ≤ 2|u− v|.

So, L = 2 and f(t, y0) = 1 = K. Therefore, with any tM ∈ (0,∞) we can choose C large enough to get:

C ≥ K

L

(
eL(tM−t0) − 1

)
=

1

2

(
e2tM − 1

)
.

Since tM is arbitrary in (0,∞), by Picard’s Theorem, Example 2.3 has a unique solution in [0,∞). The

exact solution is y(t) = (e2t + 5)/2.

The above example is somewhat simple because it is an autonomous differential equation. That means

the independent variable does not appear in the right hand side of the differential equation. Now, consider

another more complicated example of a non-autonomous differential equation.

Example 2.4. Show that
dy

dt
=

3y − 1

t
, y(1) = 1,

has a unique solution on [1,∞).

7

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

First, we find the Lipschitz constant L on [1,∞) by:

|f(t, u)− f(t, v)| = |3u− 1

t
− 3v − 1

t
| = |3

t
(u− v)|,

≤ 3

|t|
|u− v| ≤ 3|u− v|.

Furthermore,

|f(t, y0)| =
∣∣∣∣3y0 − 1

t

∣∣∣∣ = ∣∣∣∣2t
∣∣∣∣ ≤ 2, ∀t ∈ [1,∞).

Now, we have L = 3 and K = 2, independent of C, and for any tM ∈ [1,∞), C can be chosen by

C ≥ K

L

(
eL(tM−t0) − 1

)
=

2

3

(
e2tM − 1

)
.

By the Picard’s Theorem, Example 2.4 has a unique solution on [1,∞). Its exact solution is y(t) =
2

3
t3+

1

3
.

2.2 One-step methods for IVPs

2.2.1 Euler’s Method

Suppose the initial value problem (2.2) has a unique solution. In many cases, however, we can not find

the exact solution y = y(t) in explicit form. Nevertheless, we can define the approximate values of the

solution y1, y2, . . . , yN corresponding to the set of N given points t1 < t2 < . . . < tN . The set of values

{y1, y2, . . . , yN} are called the “numerical solution”. We will briefly describe some numerical schemes in

this section.

Euler’s Method is the simplest method of approximating the solution of the differential equation

y′ = f(t, y) starting by treating the function f as a constant, f(t0, y0), and replacing the derivative y′ by

the forward difference quotient. Let yi denote the approximation for y(t) at t = ti (i.e., yi ≈ y(ti)). Then

y1 = y0 + hf(t0, y0), where h = (tN − t0)/N . In general, Euler’s method is written as:

yi+i = yi + hf(ti, yi), i = 0, 1, . . . , N − 1. (2.5)

There are several other ways to justify the formula in (2.5), which we now describe.

Geometrically, Euler’s Method corresponds to using the line tangent to the solution curve y(t) at

(t0, y0) to find y1. Using the value y′ = f(t0, y0) as the slope for the tangent line, the equation of the

tangent line at the point (t0, y0) is

y − y0 = f(t0, y0)(t− t0).

At the point t = t1 = h+ t0, we have

y1 = y0 + f(t0, y0)(t− t0) = y0 + hf(t0, y0).

Continue to use the approximate value f(t1, y1) as the slope for next tangent line. This gives Euler’s

Method (2.5).

8

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

Algebraically, Euler’s Method can be found by replacing the derivative y′ by the forward difference

approximation; at the first step

y′ = f(t0, y0),

becomes
y1 − y0
t1 − t0

∼= f(t0, y0),

so

y1 = y0 + hf(t0, y0).

Therefore, we again arrive at Euler’s scheme (2.5).

Taylor’s Theorem gives the most rigorous approach to deriving Euler’s formula. Suppose that y′′ is

differentiable, using a Taylor expansion for y at ti+1 = ti + h, we get

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξ), (2.6)

for ξ ∈ [ti, ti+1]. By taking y(ti+1) = yi+1, y(ti) = yi and y′(ti) = f(ti, yi), we obtain Euler’s method

again. This also suggests the local discretization error at each step is O(h2).

Example 2.5. Consider the initial value problem from [18, p. 285]

y′ = ty + t3, y(0) = 1, t ∈ (0, 1].

This has the exact solution y(t) = 3et
2/2−t2−2. Figure 2.1 shows Euler’s method applied to the problem

with N = 8 steps. The error at each step is quantified by the distance along the vertical axis between the

true solution and the approximate solution. We can observe the error accumulation after every step in this

figure (this concept of error accumulation is made more rigorous in Definition 2.2). Table 2.1 shows the

errors in the approximate solutions generated by applying Euler’s method to Example 2.5 with different

numbers of steps. In this table, we can see that the errors reduce by a factor of 2 when the number of

steps is doubled. This suggests that, although the local discretization error may be proportional to h2,

as implied by (2.6), the accumulated error is proportional to the stepsize h.

9

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t

y(
t)

Exact solution
Euler approximation

Figure 2.1: True solution and Euler’s method with N = 8 for Example 2.5.

N max
i=0,1,...,N

|y(ti)− yi|

2 6.337e-001

4 3.789e-001

8 2.101e-001

16 1.111e-001

32 5.720e-002

64 2.903e-002

128 1.463e-002

Table 2.1: Errors in the numerical solution obtained by applying Euler’s method to Example 2.5

.

2.2.2 Euler’s method for systems of IVPs

In practice, most real world problems are complex and involve multiple interacting components, and so

are modelled by systems of differential equations. Euler’s method (2.5) can be applied to systems of

ODEs. In the following, we consider a system of two first-order ODEs in detail:

y′1 = f1(t, y1, y2),

y′2 = f2(t, y1, y2),

with initial values: y1(t0) = y1,0 and y2(t0) = y2,0. Then we have the approximation:

y1,i+1 = y1,i + hf1(ti, y1,i, y2,i),

y2,i+1 = y2,i + hf2(ti, y1,i, y2,i).

10

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

From this, we can easily generalize Euler’s Method to the case of a system of m equations:

yj,i+1 = yj,i + hfj(ti, y1,i, . . . , ym,i), for j = 1, 2, . . . ,m.

We now employ Euler’s Method to a simple coupled system where we know the exact solution.

Example 2.6. Let us consider the system

dy1
dt

= −1 + et + y1y2,

dy2
dt

= −1− e−t + y1y2,

on the interval (0, 1] where y1(0) = 1 and y2(0) = 1. The exact solution is

y1(t) = et, y2(t) = e−t.

Therefore, we can easily calculate the errors for each component that occurs when using Euler’s Method.

These are shown in Table 2.2. As with the scalar example above, the error of each component is propor-

tional to h = 1/N .

N max
i=0,1,...,N

|y1(ti)− y1,i| max
i=0,1,...,N

|y2(ti)− y2,i|

2 5.1892e-001 2.9614e-001

4 3.4399e-001 2.2045e-001

8 2.1269e-001 1.4786e-001

16 1.2274e-001 8.9559e-002

32 6.6926e-002 5.0146e-002

64 3.5122e-002 2.6685e-002

128 1.8018e-002 1.3787e-002

Table 2.2: Errors in the numerical solution obtained by applying Euler’s method to Example 2.6

.

Figure 2.2 shows the graph of the true solution and Euler’s approximation with the number of steps

N = 8. Two dash lines marked with squares are the approximate solutions. We again see the gradually

increasing accumulated error. We will study this phenomenon in the next section.

11

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

t

y(
t)

True y
1

True y
2

Approx y
1

Approx y
2

Figure 2.2: True solution and Euler’s method with N = 8 for Example 2.6.

2.2.3 Analysis of Euler’s Method

In this section, we will have a closer look at the error that occurs when using Euler’s Method. This is the

basis of much of the theoretical developments in later chapters. By understanding this error carefully, we

can design and develop algorithms to control it.

The Euler’s Method is a very special case of so-called one-step methods that have the general form:

yi+1 = yi + hϕ(ti, yi;h). (2.7)

In the method of Euler, one has ϕ(ti, yi;h) = f(ti, yi).

In order to assess the accuracy of the one-step method (2.7), we first introduce some definitions.

Definition 2.2. The difference between the approximate solution and the true solution of the initial

value problem at step i is the global error :

εi = y(ti)− yi.

The global error quantifies the accumulated error from the previous steps together with the new error

from the Euler approximation at this step. In addition, suppose the quantity

εi+1 − εi
h

=
y(ti+1)− yi+1 − (y(ti)− yi)

h
=

y(ti+1)− y(ti)− hϕ(ti, y(ti);h)

h

shows us how well the one-step method approximates the exact solution on each interval [ti, ti + h]. This

leads naturally to the next definition.

Definition 2.3. The truncation error is

Ti :=
y(ti+1)− y(ti)

h
− ϕ(ti, y(ti);h). (2.8)

12

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

For Euler’s Method, which has ϕ(ti, yi;h) = f(ti, yi), we substitute the Taylor expansion (2.6) into

(2.8) to get:

T = max
i=0,...,N

|Ti| ≤
h

2
max

t0≤t≤tN

|y′′(t)|. (2.9)

Since y′′(t) is independent of h, we can write (2.9) as T ≤ Ch for some constant C independent of h.

This can also be expressed succinctly as

T = O(h). (2.10)

The next theorem relates the global error and the truncation error [17, Theorem 12.2]:

Theorem 2.2. Consider the general one-step method (2.7), where ϕ is a continuous function of its

arguments and satisfies a Lipschitz condition with respect to its second argument. Then,

|εN | ≤ T

(
eL(tN−t0)−1

L

)
,

where T = maxi=1,2,...,N |Ti|.

From (2.9), the global error for Euler’s Method can be bounded by

|εN | ≤ h

2
max |y′′(t)|

(
eL(tN−t0)−1

L

)
.

Since L, y′′, tN and t0 depend on the problem data, we can write this more succinctly as |εN | ≤ hK. That

is we can rewrite |εN | = O(h), which emphasises that the error is directly proportional to the stepsize h.

2.2.4 Consistency and Convergence

We would like to know if our one-step method is reliable. In other words, we wish to examine the

convergence behavior as h → 0 of an approximation solution furnished by a one-step method, and hope

to show that

lim
h→0

yN = y(tN).

Equivalently,

lim
h→0

εN = 0.

This issue is the crucial part of this section. First, we need some definitions.

Definition 2.4. The order of accuracy (also called the order of convergence) of a numerical method

is p if there are positive constants K and h0 such that

|TN | ≤ Khp, for all h ≤ h0.

From (2.10), we see that Euler’s method is 1st-order.

Definition 2.5. A one-step method yi+1 = yi + hϕ(ti, yi;h) is consistent with the differential equation

y′(t) = f
(
t, y(t)

)
if f(t, y) ≡ ϕ(t, y; 0).

13

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

As mentioned, the Euler’s method has ϕ(t, y;h) = f(t, y), hence it is consistent.

Definition 2.6. We say that the one-step method is convergent if

lim
h→0

|εN | = 0.

In particular, the global error for Euler’s method can be bounded as εN ≤ Ch. Therefore, Euler’s

method converges for small enough h. With arguments similar to those used to prove Theorem 2.2, one

can prove the convergence of the general one-step method [17, Theorem 12.3].

Corollary 2.1. Consider the initial value problems (2.2) and one-step method (2.7). Let ϕ be continuous

and satisfy the Lipschitz condition and suppose this one-step method has

|T | ≤ Chp.

Then,

|εN | ≤ Chp. (2.11)

Remark 2.1. In Section 2.3, we will consider a case where ϕ is not continuous, so this theory does not

hold.

From Corollary 2.1 and Definition 2.4, we can see that if a one-step method has order p then there

exists a constant K such that

|εN | ≤ Khp.

Note that the above inequality only gives a lower bound for the rate of convergence, p. That is, the

scheme may actually have a higher rate of convergence in practice than is given by the theory. Therefore,

it is common to numerically verify if this given rate is sharp; that is, not only do we have that |εN | ≤ Khp,

but actually |εN | ≈ Khp. A standard approach is the use that

p ≈ log2

(
|εN |
|ε2N |

)
.

To justify this, let εN be the global error at with respect to the number of steps N and the corresponding

stepsize be h. We obtain

|εN | ≈ Khp.

When the number of steps is doubled to 2N , then the new stepsize is h/2 and,

|ε2N | ≈ K

(
h

2

)p

.

Therefore,
|εN |
|ε2N |

≈ 2p.

and,

p ≈ log2

(
|εN |
|ε2N |

)
.

14

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

In Table 2.3 we again give the computed errors for various N for Example 2.5, as in Table 2.1, but

now with the computed rate of convergence. We can see that the method is indeed 1st-order convergent.

N max
i=0,1,...,N

|y(ti)− yi| Rate

2 6.337e-001

4 3.789e-001 0.7418

8 2.101e-001 0.8510

16 1.111e-001 0.9191

32 5.720e-002 0.9577

64 2.903e-002 0.9783

128 1.463e-002 0.9890

Table 2.3: Rate of convergence of Euler’s method for Example 2.5

.

2.2.5 Runge-Kutta 2

Runge-Kutta 2 (RK2) is a simple approach to improve upon the accuracy we can obtain from Euler

method. The general RK2 is written as:

k1 = f(ti, yi),

k2 = f(ti + αh, yi + βhk1),

yi+1 = yi + h(A1k1 +A2k2).

If A1 and A2 are chosen so that A1 +A2 = 1, then the method is consistent. Moreover, if we take α = β

and A2 = 1/(2α), then the method is “2nd order accurate”:

|y(ti)− yi| ≤ Ch2,

It is very useful and convenient to display the coefficients as a Butcher tableau [3, §232], as in Table 2.4

below. Let us suppose a Runge-Kutta method has s stages. Then, the tableau is defined by the square

matrix β = (βij) ∈ Rs×s and the two vectors α = (α1, . . . , αs)
T ∈ Rs, A = (A1, . . . , As)

T ∈ Rs.

α β

AT

Table 2.4: Butcher tableau form.

15

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

With the Butcher tableau above, the general scheme is

k1 = f(ti + α1h, yi + β11hk1 + β12hk2 + . . .+ β1shks),

k2 = f(ti + α2h, yi + β21hk1 + β22hk2 + . . .+ β2shks),

... =
...

...

ks = f(ti + αsh, yi + βs1hk1 + βs2hk2 + . . .+ βsshks),

yi+1 = yi + h(A1k1 +A2k2 + . . .+Asks).

(2.12)

In this section, we only focus on numerical methods that are explicit. That is where ki in the right hand

side of (2.12) is not dependent of kj for j ≥ i. Therefore, the matrix β is strictly lower triangular. So

the zero elements of the matrix β can be omitted for the usual notational convention.

Remark 2.2. Notice that if β is not strictly lower triangular, then to compute ki we need k1, k2, . . . , ks.

That is, in general, such methods are implicit, and are much more difficult to implement in practice. We

will return to implicit methods later in Chapter 4.

We now consider the Butcher tableau for specific explicit Runge-Kutta second order methods. In

particular, one can choose α = β = 1, A1 = A2 = 1/2 and get the Improved Euler Method or can take

α = β = 1/2, A1 = 0, A2 = 1 and get the Modified (Midpoint) Euler Method. Table 2.5 shows these

methods in tableau form.

0

1 1

1/2 1/2

0

1/2 1/2

0 1

Table 2.5: The Improved (left) and Modified (right) Euler Methods

If we apply the Modified method to a system of m first-order ODEs, we can formulate the methods

as follows: for j = 1, 2, . . . ,m,

kj,1 = fj(ti, y1,i, . . . , ym,i),

kj,2 = fj(ti +
h

2
, y1,i +

h

2
k1,1, . . . , ym,i +

h

2
km,1),

yj,i+1 = yj,i + kj,2.

With the Improved method, the general formula for the system is:

kj,1 = fj(ti, y1,i, . . . , ym,i),

kj,2 = fj(ti + h, y1,i + hk1,1, . . . , ym,i + hkm,1),

yj,i+1 = yj,i +
h

2
(kj,1 + kj,2).

We now apply the Improved and Modified methods to our previous Example 2.5. The results are shown

in Table 2.6. For this table, when the number of steps is doubled, the error is reduced by the factor of

four compared with the factor of two in Table 2.3.

16

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

N Improved Modified

εN pN εN pN

2 1.282e-002 1.128e-001

4 4.846e-003 1.4035 3.418e-002 1.7225

8 1.610e-003 1.5894 9.417e-003 1.8598

16 4.440e-004 1.8587 2.469e-003 1.9312

32 1.174e-004 1.9193 6.319e-004 1.9662

64 3.014e-005 1.9618 1.598e-004 1.9833

128 7.635e-006 1.9808 4.019e-005 1.9917

Table 2.6: Errors in the solutions to Example 2.5 using the Improved and Modified Euler’s Methods.

Example 2.7. The model we want to study in Chapter 3 is a system of four equations. We now consider

an example of a system of 4 equations,

dy1
dt

= y1 + y22 + y24 − t,

dy2
dt

= y4,

dy3
dt

= y3y4,

dy4
dt

= −y2,

on the interval (0, 1] with initial values y(0) = (1, 0, 1, 1)T . The exact solution is

y =


et + t

sin(t)

esin(t)

cos(t)

 .

With N = 4 intervals, the stepsize h = (tM − t0)/N = 0.25. The approximate and exact solution are

graphed in Figure 2.3.

17

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

True y

1

True y
2

True y
3

True y
4

Approx y
1

Approx y
2

Approx y
3

Approx y
4

Figure 2.3: The graph of Example 2.7 using Improved Euler Method.

The errors of each component can be seen in Table 2.7. When N is doubled, a reduction by a factor

of four is seen in all four components. Therefore, the order of convergence of these methods is p = 2.

N max
i=1,...,N

|y1(ti)− y1,i| max
i=1,...,N

|y2(ti)− y2,i| max
i=1,...,N

|y3(ti)− y3,i| max
i=1,...,N

|y4(ti)− y4,i| Rate

2 9.7148e-002 3.3529e-002 2.5682e-002 2.4677e-002

4 2.5688e-002 7.1313e-003 2.5625e-003 7.5865e-003 1.9191

8 6.4471e-003 1.6160e-003 2.7768e-004 2.0514e-003 1.9944

16 1.6035e-003 3.8510e-004 7.4759e-005 5.3083e-004 2.0075

32 3.9901e-004 9.3816e-005 2.8635e-005 1.3486e-004 2.0067

64 9.9467e-005 2.3140e-005 8.4156e-006 3.3980e-005 2.0041

128 2.4828e-005 5.7465e-006 2.2618e-006 8.5276e-006 2.0023

Table 2.7: Errors in the numerical solution obtained by applying the Improved Method to Example 2.7

.

2.2.6 Runge-Kutta 3

The general form for an explicit third order Runge-Kutta method is

k1 = f(ti, yi),

k2 = f(ti + α2h, yi + β21hk1),

k3 = f(ti + α3h, yi + β31hk1 + β32hk2),

yi+1 = yi + h(A1k1 +A2k2 +A3k3).

The tableau is shown in Table 2.8.

18

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

0

α2 β21

α3 β31 β32

A1 A2 A3

Table 2.8: Butcher tableau for general RK3.

The scheme’s coefficients are chosen so that the method has consistency and third order convergence.

The conditions are

A1 +A2 +A3 = 1,

A2α2 +A3α3 =
1

2
,

A2α
2
2 +A3α

2
3 =

1

3
,

A3β32α2 =
1

6
.

The parameters for four well-known third order methods are shown in Table 2.9 (see, e.g. [7, Section

12.2]). They are the Nystrom, Nearly Optimal, Classical and Heun Methods:

(a) Nystrom

0

2/3 2/3

2/3 0 2/3

2/8 3/8 3/8

(b) Nearly optimal

0

1/2 1/2

3/4 0 3/4

2/9 3/9 4/9

(c) Classical

0

1/2 1/2

1 −1 2

1/6 4/6 1/6

(d) Heun

0

1/3 1/3

2/3 0 2/3

1/4 0 3/4

Table 2.9: Four Runge-Kutta 3 methods.

Now we return to Example 2.5 again and apply the Heun and Classical Methods. The errors are

shown in Table 2.10. We note that they are converging at a rate that is proportional to N−3.

19

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

N Heun Classical

εN pN εN pN

2 1.921e-002 4.477e-003

4 2.936e-003 2.7098 8.422e-004 2.4105

8 4.027e-004 2.8664 1.293e-004 2.7037

16 5.258e-005 2.9371 1.793e-005 2.8501

32 6.712e-006 2.9696 2.361e-006 2.9246

64 8.477e-007 2.9851 3.030e-007 2.9622

128 1.065e-007 2.9926 3.837e-008 2.9811

Table 2.10: Errors in the numerical solution to Example 2.5 using the Heun and Classical Methods.

2.2.7 Runge-Kutta 4

The general form of explicit Runge-Kutta fourth order method is shown in the Butcher Tableau in Ta-

ble 2.11:

0

α2 β21

α3 β31 β32

α4 β41 β42 β43

A1 A2 A3 A4

Table 2.11: General RK4 Method.

Once again, in order to guarantee the consistency and convergence of these method, the conditions

on the coefficients are

A1 +A2 +A3 +A4 = 1,

A2α2 +A3α3 +A4α4 =
1

2
,

A2α
2
2 +A3α

2
3 +A4α

2
4 =

1

3
,

A3β32α2 +A4β42α2 +A4β43α3 =
1

6
,

A2α
3
2 +A3α

3
3 +A4α

3
4 =

1

4
,

A3α3β32α2 +A4α4β42α2 +A4α4β43α3 =
1

8
,

A3β32α
2
2 +A4β42α

2
2 +A4β43α

2
3 =

1

12
,

A4β43β32α2 =
1

24
.

The road to establish these conditions can be found in many standard textbooks (e.g. [3, §235]).

20

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

The most commonly used Runge-Kutta method is the fourth-order method, which uses a linear com-

bination of four function evaluations:

k1 = f(ti, yi),

k2 = f(ti +
h

2
, yi +

h

2
k1),

k3 = f(ti +
h

2
, yi +

h

2
k2),

k4 = f(ti + h, yi + hk3).

These four equations, together with the recursion equation

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4),

make up the method. Table 2.12 shows the Butcher tableau for this RK4 method.

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

Table 2.12: The classic RK4 Method.

Example 2.8. Now let us compare four methods for a single equation, with continuous data:

y(0) = 1, y′ =
1

2

(
t− y(t)

)
.

Let EN = max
i=0,...,N

|y(ti) − yi|, pN = log2(EN/E2N), the numerical result is shown in Table 2.13 and

can be visualised in Figure 2.4 by using a log-log plot. As discussed, the error of pth-order method is

proportional to hp = N−p. Therefore, when we plot the log of the number of steps N versus the log of

the corresponding error, we obtain the line with the slope −p for various methods, as seen in Figure 2.4.

N Euler Modified Heun RK4

EN pN EN pN EN pN EN pN

2 1.32× 10−1 1.14× 10−2 7.24× 10−4 3.65× 10−5

4 6.11× 10−2 1.11 2.60× 10−3 2.14 8.18× 10−5 3.15 2.05× 10−6 4.15

8 2.94× 10−2 1.05 6.20× 10−4 2.07 9.73× 10−6 3.07 1.22× 10−7 4.07

16 1.45× 10−2 1.02 1.52× 10−4 2.03 1.17× 10−6 3.04 7.42× 10−9 4.04

32 7.17× 10−3 1.01 3.76× 10−5 2.01 1.46× 10−7 3.02 4.58× 10−10 4.02

64 3.57× 10−3 1.01 9.31× 10−6 2.01 1.82× 10−8 3.01 2.84× 10−11 4.01

Table 2.13: Errors in the computed solution obtained by applying classical methods to Example 2.8

21

2.2. ONE-STEP METHODS FOR IVPS CHAPTER 2. NUMERICAL METHODS FOR IVPS

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N

E
rr

or

Euler
Modified
Heun
RK4

Figure 2.4: A log-log plot of the errors in numerical solution for various N .

2.2.8 Implementation of Runge-Kutta Methods in Matlab

Matlab is the most commonly used computer system for implementing numerical methods, see, e.g.

[7, 11]. All of the numerical results, tables and figures presented in this thesis were generated by Matlab

programmes that I wrote. As an example, I now give a short segment of compact Matlab code that

implements a general explicit Runge-Kutta method, expressed as a Butcher Tableau, for a system of m

equations.

Algorithm 2.1 Matlab Implementation of a general explicit Runge Kutta Method

for n = 1:N

K=zeros(length(y0), length(A));

for i=1:Order

K(:, i) = f(t(n) + alpha(i)*h, Y(:, n) + h*K(:, 1:i-1)*beta(i, 1:i-1));

end

Y(:, n+1) = Y(:,n) + h*K*A’;

end

Notation:

• The alpha, beta, and A are from the Butcher Tableau.

• N: number of steps.

• Order: the order of Runge-Kutta method. Note that: Order=length(A).

22

2.3. PROBLEMS WITH DISCONTINUITIES CHAPTER 2. NUMERICAL METHODS FOR IVPS

2.3 Problems with discontinuities

As we have seen, the classical numerical methods like Euler’s and Runge-Kutta work very well for initial

value problems (2.2) in which the function f is continuous and satisfies a Lipschitz condition. In this

section, we investigate some issues that occur when f is not continuous and try to understand why

this presents difficulties for certain classical numerical schemes. We also propose a non-uniform stepsize

technique to overcome these difficulties.

2.3.1 Preliminary examples

Example 2.9. Consider the following initial value problem

y′(t) =

2e2t, t 6 1/2,

−2e, t > 1/2,

on the interval t ∈ (0, 1] and y(0) = 1.

The graph of f = y′(t) on the interval [0, 1] is shown in Figure 2.5 (left). We can see that it is

discontinuous at the point t = 1/2. The graph on the right shows its exact solution:

y(t) =

e2t, t 6 1/2

−2et+ 2e, t > 1/2.

We see that it is only piecewise smooth.

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Figure 2.5: The graph of y′(t) (left) and y(t) (right) on [0, 1].

We will see that, for this problem, the accuracy and rate of convergence of some numerical methods

is less than that theoretically possible when f is smooth. If we can understand why this occurs, then

we can choose which method is best. For example, we first employ the Improved Euler Method and the

Classical RK3 methods which can be summarized in the tableaux below. We notice that for both these

methods, one of the coefficients of the vector α in the Butcher tableau is 1. It is highlighted in bold.

23

2.3. PROBLEMS WITH DISCONTINUITIES CHAPTER 2. NUMERICAL METHODS FOR IVPS

0

1 1

1/2 1/2

0

1/2 1/2

1 −1 2

1/6 4/6 1/6

Using Improved and Classical RK3 methods, we obtain the numerical results in Table 2.14.

N Improved Classical

εN pN εN pN

2 2.577e+000 9.055e-001

4 1.323e+000 0.8666 4.530e-001 0.9992

8 6.706e-001 0.9363 2.265e-001 0.9999

16 3.375e-001 0.9690 1.133e-001 1.0000

32 1.693e-001 0.9847 5.663e-002 1.0000

64 8.481e-002 0.9924 2.832e-002 1.0000

128 4.244e-002 0.9962 1.416e-002 1.0000

Table 2.14: Errors and rate of convergence for Example 2.9 using Improved Euler and Classical Methods.

According to theory, the Improved Euler and Classical RK3 methods have the order of convergence

p = 2 and p = 3 respectively. However, in Table 2.14 we see that they are both only 1st-order.

Now consider the Modified and Heun methods, which are shown below. There we see that all the

coefficients in vector α are less than 1.

0

1/2 1/2

0 1

0

1/3 1/3

2/3 0 2/3

1/4 0 3/4

Numerical results for these methods applied to Example 2.9 are displayed in Table 2.15. Note that

the rates of convergence are p = 2 and p = 3 for the Modified Euler and Heun methods respectively.

Figure 2.6 shows the rates of convergence for each of these four methods applied to Example 2.9. The

Improved method and Classical RK3 have the same 1storder of convergence, but the Modified and Heun

methods can maintain their orders of convergence. The differences in results between these methods lies

in having the parameter α < 1. Since at step i of the one-step methods, the function f is evaluated

at t = ti + αh, αk < 1 for k = 1, 2, . . . , p ensures that is it not evaluated at the point of discontinuity.

Therefore, we prefer to use the numerical schemes such as the Modified and Heun methods for certain

problems where the right-hand side is defined in a piecewise fashion.

24

2.3. PROBLEMS WITH DISCONTINUITIES CHAPTER 2. NUMERICAL METHODS FOR IVPS

N Modified Heun

εN pN εN pN

2 6.956e-002 7.481e-003

4 1.777e-002 1.9689 9.711e-004 2.9457

8 4.467e-003 1.9921 1.230e-004 2.9803

16 1.118e-003 1.9980 1.547e-005 2.9921

32 2.796e-004 1.9995 1.938e-006 2.9965

64 6.992e-005 1.9999 2.425e-007 2.9984

128 1.748e-005 2.0000 3.033e-008 2.9992

Table 2.15: Errors and rate of convergence for Example 2.9 using the Modified Euler and Heun Methods.

10
0

10
1

10
2

10
3

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

E
rr

or

Classical RK3
Heun
Modified
Improved

Figure 2.6: The rates of convergence in Example 2.9.

2.3.2 Recovering the rate of convergence

In order to cope with the reduction in the rates of convergence that appear in the Improved and Classical

RK3 Methods as seen in Table 2.14, we introduce a simple nonuniform step technique. According to the

theory, the Improved Method is 2nd-order. By (2.11), we have

|Ti| ≤ Ch2 ∼ CN−2.

This due to the fact that the truncation error is O(h2), which is deduced from Taylor’s Theorem. However

Taylor’s Theorem assumes the function f must be differentiable at all points in the interval. Furthermore,

the Corollary 2.1 that relates the truncation error to the global error uses that f is Lipschitz.

Suppose the discontinuity occurs at ti and so the above assumptions are not satisfied. As we observed

25

2.3. PROBLEMS WITH DISCONTINUITIES CHAPTER 2. NUMERICAL METHODS FOR IVPS

in Table 2.14, the error for the Improved method is now just 1st-order at ti, i.e,

|ϵi| ≤ CN−1.

Then the accumulated error of next step remains in 1st order

|ϵi+1| ≤ |ϵi|+ CN−2 ∼ CN−1.

Therefore, to recover the rate of convergence, we can add an extra step with the length of h = 1/N2

before the point where the discontinuity occurs.

Returning to Example 2.9, the discontinuity occurs at the point of t = 1/2. With uniformly spaced

time steps, the Improved Euler’s and Classical RK3 methods will evaluate f at that point, leading to a

reduced rate of convergence at that point, which is accumulated to give the reduced rate of convergence

at all subsequent points. As suggested by the above discussion, we add an extra step with the length of

h = 1/N2 for the Improved Method and h = 1/N3 for the Classical RK3 respectively before t = 1/2.

With this approach, we recover the maximum rate of accuracy successfully for Improved and Classical

RK3 methods. The results are shown in Table 2.16.

N Improved Classical

εN pN εN pN

3 1.323e+000 2.264e-001

5 3.171e-001 2.0612 2.829e-002 3.0008

9 7.707e-002 2.0410 3.537e-003 2.9994

17 1.907e-002 2.0145 4.423e-004 2.9996

33 4.755e-003 2.0042 5.529e-005 2.9998

65 1.188e-003 2.0011 6.912e-006 2.9999

129 2.969e-004 2.0003 8.641e-007 2.9999

Table 2.16: Errors and rate of convergence applying the Improved and Classical Methods with the adjusted

stepsize to Example 2.9.

26

Chapter 3

The Intensive Care Unit-Minimal

Model

In this chapter we investigate the numerical solution of the well-known Intensive Care Unit-Minimal

Model (ICU-MM) of Van Herpe [10] that models the glucose and insulin levels in critically ill patients.

In practical cases, certain coefficients of the model are discontinuous. As noted above in Section 2.3, this

can lead to a reduction of the rate of convergence of some one-step numerical methods. We use those

observations to select the best scheme for this problem. Furthermore, in Section 3.2, we propose a simple

time step selection algorithm for Runge-Kutta methods. The numerical results for the ICU-MM using

this algorithm are also shown in Section 3.2.4. This will serve as an introduction to the more sophisticated

time step controlling method that we will develop in Chapter 5.

3.1 The ICU-MM

We first introduce the Intensive Care Unit-Minimal Model (see, e.g. [5, 10]) which we studied in the first

half of the project. We also apply the classical numerical one-step methods that we described in Section

1.1 to the ICU-MM model in Section 3.1.2.

3.1.1 A Mathematical Model

It is important to clinicians to be able to control efficiently the range of glycaemia (i.e., serum glucose

levels) in critically ill patients in an intensive care unit (ICU). This is done by giving a glucose infusion

if the level is too low, and insulin if the level is too high. However, responses to these therapies can vary

greatly between patients, and getting the right balance of infusion levels is very difficult. As discussed

in [5], some studies have noted that control of serum glucose may lead to improved outcomes for ICU

27

3.1. THE ICU-MM CHAPTER 3. THE ICU MINIMAL MODEL

patients, while others have found that attempting to keep serum glucose levels within certain ranges may

actually increases mortality rates. Also, as stated in [9],

“Two European multicenter studies [8] were stopped because of the high incidence of hypo-

glycemia as a consequence of the introduction of a protocol to calculate the appropriate insulin

dose based on frequent glucose measurements”.

Therefore, the prediction of the individual response of a patient to glucose and insulin infusions is very

valuable in a hospital setting. To aid with this, the Minimal Model for controlling glucose tolerance

was proposed by Bergman et al. [1]. The model was further developed by Van Herpe et al. [20, 10] for

the case of critically ill patients, leading to the ICU-MM. This model formed the basis of an approach

using a Dynamic Bayesian Network [5]. The ICU-MM is presented as the following system of ordinary

differential equations:

dG(t)

dt
=
(
P1 −X(t)

)
G(t)− P1Gb +

FG(t)

VG,

dX(t)

dt
= P2X(t) + P3(I1(t)− Ib),

dI1(t)

dt
= αmax(0, I2(t))− n(I1(t)− Ib) +

FI(t)

VI
,

dI2(t)

dt
= βγ(G(t)− h)− nI2(t),

(3.1)

where the coefficients and terms are briefly described in the Table 3.1 below. We refer readers to [5, 10]

for a more detailed discussion.

28

3.1. THE ICU-MM CHAPTER 3. THE ICU MINIMAL MODEL

G The glucose concentration in blood plasma.

X The effect of insulin on net glucose disappearance. X is

proportional to the insulin in the remote compartment.

I1 The insulin concentration in blood plasma.

I2 The remote insulin.

Gb The basal value of plasma glucose.

Ib The basal value of plasma insulin.

FI and The intravenous rate of insulin and glucose

FG are the two input variables to the model.

VG The glucose distribution space.

VI The insulin distribution volume.

P1 The glucose effectiveness when insulin remains at

basal level.

P2 The fractional rate of net remote insulin disappearance.

P3 The fractional rate of insulin-dependent increase.

γ The proportion by which endogenous insulin

is released when the endogenous insulin is produced.

~ The glucose threshold.

n The time constant for insulin disappearance.

β An additional model coefficient to keep units correct.

α A scaling factor for the second insulin variable I2.

Table 3.1: Description of parameters in the ICU-MM

For the system (3.1), the most interesting terms are FG and FI . They are the two input variables of

the intravenous rate of glucose and insulin; since the amount of these substances that are being prescribed

for a patient are reviewed every few hours, and changed instantaneously, the corresponding coefficients in

the differential equations are discontinuous. Furthermore, the glucose values G are observed and updated

every few hours. Table 3.2 shows the glucose record of sample Patient 23 mentioned in Section 1.3 over

an interval of 100 hours. These values are also graphed in Figure 3.1. Furthermore, that figure shows

the glucose and insulin infusion rates. Since these are taken to change instantaneously, the corresponding

coefficients FG and FI in (3.1) are discontinuous.

29

3.1. THE ICU-MM CHAPTER 3. THE ICU MINIMAL MODEL

Time(min) New Value Time(min) New Value

0 172.8 2100 118.8

120 162.0 2820 135.0

300 147.6 3240 158.4

480 144.0 3480 140.4

660 140.4 3720 131.4

900 133.2 3840 140.4

1080 147.6 4020 111.6

1140 124.2 4200 156.6

1320 124.2 4320 151.2

1560 138.6 4680 135.0

1740 124.2 4980 185.4

Table 3.2: Observed Glucose Levels

30

3.1. THE ICU-MM CHAPTER 3. THE ICU MINIMAL MODEL

0 1000 2000 3000 4000 5000
100

150

200

Measured glucose

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

Intravenous Glucose (F

G
)

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5
x 10

4

Intravenous Insulin (F
I
)

Figure 3.1: Observed glucose (top), the intravenous rate of glucose (middle) and the intravenous rate of insulin

(bottom).

3.1.2 Numerical Solution of the ICU-MM

It is not possible find an exact solution to the ICU-MM (3.1), so we must use a numerical method such as

Euler’s method, Runge-Kutta 2 or Runge-Kutta 4. As we have seen in the previous section, Euler’s, RK2

and RK4 methods have the order p = 1, p = 2 and p = 4 respectively. However, the specific data from

Patient 23 are discontinuous, so as discussed in Section 2.3, some classical methods may not achieve their

expected order of convergence. The Table 3.4 shows the numerical results and the rate of convergence for

some of the classical methods described above in Section 2.2 where we have used RK4 with a very large

number of steps to create a benchmark solution. We denote the maximum error at any given point by:

EN = max
i=1,...,N

|y(ti)− yi|,

31

3.1. THE ICU-MM CHAPTER 3. THE ICU MINIMAL MODEL

where y(ti) is actually taken from the benchmark solution. The term N in the first column is the number

of steps per minute. The Table 3.3 shows initial values and values of parameters that we use in this

simulation. Figure 3.2 represents a sample benchmark solution by RK4 method.

Vars and coefficients Value Units

G 172.8 mg/dl

X 0.0001 1/min

I1 9.5 µU/ml

I2 1.49 µU/ml

Gb 135 mg/dl

Ib 10.7 µU/ml

FI 0 µU/min

FG 0 mg/min

VG 120 dl

VI 9000 ml

P1 -0.0371 1/min

P2 -0.0224 1/min

P3 0.000025 ml/(min2µU)

γ 0.00014001

~ 107.4 mg/dl

n 0.2623 1/min

β 1 1/min

α 0.35 1/min

Table 3.3: Initial values and the values of parameters in the ICU-MM

32

3.2. ADAPTIVE UNIFORM METHODS CHAPTER 3. THE ICU MINIMAL MODEL

0 1000 2000 3000 4000 5000 6000
80

100

120

140

160

180

200

t (minutes)

Measured glucose

Figure 3.2: A sample benchmark solution of component G with updated values.

N Euler Improved Modified RK4

EN Rate EN Rate EN Rate EN Rate

1 9.156×10−1 6.89×10−1 6.895×10−1 6.895×10−1

2 4.519×10−1 1.018 4.611×10−3 7.224 4.619×10−3 7.221 2.218×10−4 11.602

4 2.245×10−1 1.009 1.139×10−3 2.017 1.143×10−3 2.014 5.516×10−5 2.007

8 1.119×10−1 1.004 2.831×10−4 2.008 2.839×10−4 2.009 1.375×10−5 2.004

16 5.586×10−2 1.002 7.054×10−5 2.004 7.090×10−5 2.001 3.432×10−6 2.002

32 2.791×10−2 1.001 1.765×10−5 1.998 1.766×10−5 2.005 8.568×10−7 2.002

64 1.395×10−2 1.000 4.408×10−6 2.002 4.411×10−6 2.001 2.135×10−7 2.004

128 6.973×10−3 1.000 1.101×10−6 2.001 1.103×10−6 2.000 5.274×10−8 2.017

Table 3.4: Errors in the numerical solution to the ICU-MM with the data for Patient 23.

The results seem to suggest that the RK4 method has a lower rate of convergence than for a problem

with continuous coefficients. Once again, this is because of the discontinuities in the data leads to a

reduction in the order of convergence of the numerical scheme. Therefore, we suggest the Modified

Method is a suitable choice of 2nd-order method for such types of problems.

3.2 Adaptive Uniform Stepsize Methods for Solving ODEs

3.2.1 Introduction

Consider an initial value problem:

y′(t) = f(t, y(t)), for t ∈ (0, T] and y(0) = y0. (3.2)

33

3.2. ADAPTIVE UNIFORM METHODS CHAPTER 3. THE ICU MINIMAL MODEL

In practice we usually need to find an approximate solution with a given accuracy. Therefore, the problem

of choosing an adequate stepsize h arises. A classical way to increase the accuracy is to reduce the stepsize

by a factor of two after every step until the error is less than some desired bound. In the following section,

we develop a simple uniform time step selection algorithm that computes the adequate stepsize so that

the one-step method has the error that satisfies a given tolerance.

3.2.2 Uniform stepsize selection algorithm

We will describe this technique for Euler’s method. It is easily extended to Runge-Kutta and other meth-

ods. Suppose we have an initial value problem of the form (3.2), and we are interested in approximating

y at the point t = T . As mentioned in Section 2.2.1, using Taylor’s expansion the local error (2.6) is:

y(tk + h)− yk+1 = Ch2.

In order to control this error, we need to choose a sufficiently large number of steps so that resulting yn

approximates y(T) with a desired accuracy. In other words, we need to devise a sequence of stepsizes

{h(i)} and compute the corresponding value of y
(i)
ni by using the relations y

(i)
0 = y0 and

y
(i)
k+1 = y

(i)
k + h(i)f(t

(i)
k , y

(i)
k). (3.3)

Here we are using ni to denote the number of time steps when h = h(i), and so y
(i)
ni is the approximation

for y(T). Let us define the global error of each step:

ϵ
(i)
k = |y(tk)− y

(i)
k | = Ch2.

Then we are looking for |ϵ(i)ni | < ϵ to hold where ϵ is a user-chosen tolerance. Let us assume that the error

factor C is constant for all h; this is not strictly true, but for h small enough is reasonable. Then, the

accumulated error when calculating y
(i)
ni is:

ϵ(i)ni
= niC(h(i))2 =

T

h(i)
C(h(i))2 = TCh(i) = Kh(i),

where K is also a constant. Consider two iterations with stepsize h(1) and h(2) where h(1) can be chosen

arbitrarily and h(2) < h(1), typically we can choose h(2) = h(1)/2. We have

y(t)− y(1)n1
= ϵ(1)n1

= Kh(1),

y(t)− y(2)n2
= ϵ(2)n2

= Kh(2).

Subtracting these equations yields

y(2)n2
− y(1)n1

= K(h(1) − h(2)).

Therefore,

K =
(y

(2)
n2 − y

(1)
n1)

(h(1) − h(2))
.

34

3.2. ADAPTIVE UNIFORM METHODS CHAPTER 3. THE ICU MINIMAL MODEL

Thus, the condition for the next stepsize h(3) to be within the desired range is

ϵ > |ϵ(3)n3
| = |Kh(3)| = h(3)|y(2)n2 − y

(1)
n1 |

|h(1) − h(2)|

⇒ ϵ|h(1) − h(2)|
|y(2)n2 − y

(1)
n1 |

> h(3).

Therefore,

h(3) = qϵ
|h(1) − h(2)|
|y(2)n2 − y

(1)
n1 |

. (3.4)

for some coefficient q < 1, that is chosen by the user. A typical value is q = 0.9. We can sumarise the

algorithm as follows:

Algorithm 3.1 The uniform stepsize selection algorithm

Step 1 Choose an initial stepsize h(1), compute the approximate solution y
(1)
n1 .

Step 2 Choose the stepsize h(2), typically h(2) = h(1)/2, compute the approximate solution y
(2)
n2 .

Step 3 Compute the stepsize h(3) = qϵ |h
(1)−h(2)|

|y(2)
n2

−y
(1)
n1

|
, and compute y

(3)
n3 .

Note : Analogously, if the numerical method is convergent of order p, the formula at step 3 will be:

h(3) = q

(
|(h(1))p − (h(2))p|ϵ

|y(2)n2 − y
(1)
n1 |

)(1/p)

.

3.2.3 Comparison with Euler’s method by halving the stepsize

A more standard method of choosing a suitable stepsize is to pick some initial stepsize h(0) and compute

approximations with h(i) = h(0)/2i, for i = 1, 2, . . . until the error in corresponding solution is less than

the desired tolerance. We will compare the efficiency of this scheme and Algorithm 3.1 by applying both

of them to the simplest initial value problem:

y′(x) = y; y(0) = 1, (3.5)

on the interval (0, 1]. The goal is to approximate the value y(1) with an error less than ϵ = 10−3. The

exact solution is y(x) = ex. Then y(1) ≈ 2.7183. We first find the value of N that ensures the error at

t = 1 is less than ϵ = 10−3 simply by doubling N until the error is reached. Let us choose the initial

number of steps as N = 8 and the values of y
(i)
ni for the sequence {h(i)} defined by

y
(1)
8 ≈ 2.6131, y

(5)
128 ≈ 2.7116,

y
(2)
16 ≈ 2.6651, y

(6)
256 ≈ 2.7149,

y
(3)
32 ≈ 2.6916, y

(7)
512 ≈ 2.7166,

y
(4)
64 ≈ 2.7049, y

(8)
1024 ≈ 2.7174,

with the error at y
(8)
1024 = 8.3887× 10−4. Therefore, 8 iterations are needed and the cost of computing the

approximation is

8m+ 16m+ · · ·+ 1024m = 8(28 − 1)m = 2040m, (3.6)

35

3.3. CONCLUSION CHAPTER 3. THE ICU MINIMAL MODEL

where m is the computational cost of one step of (3.3), which is constant for our implementation. Now

let us keep the initial number of steps with N (1) = 8, N (2) = 16, but here we use Algorithm 3.1 with the

coefficient q = 0.95. Then the first two approximations to y(1) are the same:

y
(1)
8 ≈ 2.6131, y

(2)
16 ≈ 2.6651.

Because the allowed error is ϵ = 10−3, we have

h(3) = 0.95
(0.125− 0.0625)× 0.001

|2.6651− 2.6131|
≈ 0.0011. (3.7)

Then N (3) =

⌈
1

h(3)

⌉
= 877. As expected, we have the error 9.7945 × 10−4. Thus, when our simple

uniform stepsize selection method is used, the number of iterations needed is only 3 with the total cost

of computation

8m+ 16m+ 877m = 901m. (3.8)

which is around half of the cost of computing with doubling the number of steps.

3.2.4 Applying the algorithm to the ICU-MM

We now apply Algorithm 3.1 using Euler’s method to the model (3.1) and the same values of parameters

as discussed in Section 3.1. We choose two initial calculations with number of steps per minute N = 1

and N = 2, then h(1) = 1 and h(2) = 0.5. The corresponding approximate solutions are 134.82 and 134.37

respectively. Suppose we want the allowed error to be ϵ = 10−2, with q = 0.9. Then we get

h(3) = 0.9
(1− 0.5)× 10−2

|134.37− 134.82|
= 0.01.

Therefore, N (3) =

⌈
1

h(3)

⌉
= 100. The result obtained by this algorithm after 3 steps is summarised in

Table 3.5. Comparing with the error of Euler’s method in Table 3.4, the algorithm shows its efficiency.

Indeed, with the given tolerance ϵ = 10−2, the algorithm helps us compute the step length in which the

error is met after just three iterations. On the other hand, if we use the “stepsize halving” algorithm, we

need to compute the solution for each of N = 1, 2, . . . , 128.

N Euler

1 9.156×10−1

2 4.519×10−1

100 9.802×10−3

Table 3.5: Adaptive uniform algorithm for Patient 23 with a tolerance of ϵ = 10−2.

3.3 Conclusion

We have discussed the numerical solution of the Intensive Care Unit-Minimal Model by using classical

numerical methods for IVPs. For this model, the difficulties arising from real measured data are also

36

3.3. CONCLUSION CHAPTER 3. THE ICU MINIMAL MODEL

addressed. This causes a reduction of order of convergence of several numerical schemes. For such

problems with discontinuous coefficients, we suggest which methods are the best choices. We also proposed

a uniform stepsize selection technique to pre-estimate the stepsize for which the computed error is satisfied.

As stated in [4]:

In a typical busy ICU, a patient’s plasma glucose may only be measured every 1-4 hours.

Since these sparse measurements are used as evidence in the DBN, there seems little point in

running inference on a DBN with steps of length 1 minute or less.

This fact motivates the need to develop another algorithm to cope with this issue; this we do in later

chapters.

37

Chapter 4

Numerical Solution of Stiff

Differential Equations

The property of “stiffness” is a very common phenomenon associated with many differential equations.

A wide range of such problems comes from the study of vibrations, chemical reactions, electrical circuits

and biological processes (see, e.g. [6, Section 5.11]). Of particular interest for this study is a system of

differential equations for modelling the glucose and insulin levels in critically ill patients that has been

proposed by colleagues in Applied Mathematics; the overarching goal of my Masters project has been to

design a suitable numerical scheme for this model.

As discussed earlier, severely ill patients in an Intensive Care Unit (ICU) may stay there for several

days. Controlling the interaction between blood glucose and insulin during that period of time is very

significant, and so accurate mathematical models are useful. The ICU-MM model of [20], which we intro-

duced in Chapter 3 above, is one approach. However, it often fails to capture important system dynamics.

To address this, our colleagues from Applied Mathematics, Petri Piiroinen and Liam O’Callaghan, have

proposed a new model, and have fitted the model parameters to observed data for a particular patient

over the period of several days.

This new model seems to be far more responsive than the simpler ICU-MM. However, this improved

modelling comes at a cost: it presents a much more difficult problem to solve numerically. In particular,

the model is quite stiff. As we discuss below, the standard explicit methods we mentioned in Section 2.2

tend to generate wildly inaccurate computed solutions for such problems. In this chapter, we briefly

discuss the stiffness phenomenon in differential equations in Section 4.1 and also investigate the application

of implicit schemes in Section 4.3. These schemes seem to be a suitable choice for stiff differential

equations. However, they require that a nonlinear system be solved at each time-step; we show how this

can be done for the given problem in Section 4.2. Finally, the chapter culminates with the robust solution

of the complex model (4.8) using an implicit scheme.

38

4.1. STIFF DIFFERENTIAL EQUATIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

4.1 Stiff Differential Equations

The numerous classes of initial value problems for which the error can grow very large when using explicit

methods, like Euler’s and the explicit Runge-Kutta methods, are called stiff equations [6, Section 5.11].

As we have seen in Section 2.2.3, one-step methods for approximating solutions to initial value problems

lead to error terms that involve higher derivatives of the solution. The stiffness phenomenon can occur

when the derivative magnitude increases sharply but the solution does not. As noted by Iserles [12, p.

56]

Several attempts at a rigorous definition of stiffness appear in the literature, but it is perhaps

more informative to adopt an operative designation. Thus, we say that an ODE system

y′ = f(t,y), t ≥ t0, y(t0) = y0,

is stiff if its numerical solution by some methods requires (perhaps in a portion of the solution

interval) a significant depression of the stepsize to avoid instability.

This means that for most stiff problems, the generated solution can be very unstable unless an extremely

small stepsize is used. We will consider a simple example in order to understand the behaviour of the

stiff problem.

Example 4.1. The initial value problem:

y′ = −20y, y(0) = 1, (4.1)

has the exact solution y = e−20t. Therefore, the approximate solution must tend to zero in the long

term. The following analysis is based on [6, Chap. 5]. Let h = T/N , where T is the final time for the

simulation, and ti = ih, i = 0, 1, . . . , N . Applying Euler’s method to this problem, we have y0 = 1, and,

yi+1 = yi + h(−20yi) = (1− 20h)yi = (1− 20h)(1− 20h)yi−1 = . . .

so

yi+1 = (1− 20h)i+1, for i = 0, 1, . . . , N − 1.

We will now see the issue with applying Euler’s method to this problem. Because the exact solution is

y = e−20t, the error at the ith step is

|y(ti)− yi| = |e−20ih − (1− 20h)i|.

But as i increases, the exact solution y = e−20t tends to zero, however, the approximate solution yi =

(1 − 20h)i will have this property only if |(1 − 20h)| < 1. That is, the method will yield a reasonable

solution only if h < 1/10.

More generally, suppose we have the initial value problem

y′ = λy, y(0) = y0, andλ < 0. (4.2)

39

4.1. STIFF DIFFERENTIAL EQUATIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

Using an analogous argument, the condition for the acceptable stepsize is |1 + λh| < 1, which implies

that h < 2/λ.

For the initial value problem (4.2), it is not only Euler’s method that may yield an unstable solution,

but also general one-step methods. Following the approach of [6, §5.11], we express a general method as

a function of h and λ:

yi+1 = Q(hλ)yi,

and note that the accuracy of the scheme is determined by how well Q(hλ) approximates ehλ. Since

λ < 0, ehλ tends to zero, and the approximate solution has this property when |Q(hλ)| < 1. This leads

to the following definition (see [6, Definition 5.25]):

Definition 4.1. The region of absolute stability of a one-step method is

R = {hλ ∈ C | |Q(hλ)| < 1}.

Definition 4.2. A numerical method is said to be A-stable if its region of absolute stability contains the

entire left half plane; that is it is stable for all h. If it is stable only when for h ≤ hmin, for some hmin

that depends on the method and the problem data, then we say it is conditionally stable.

We see that Euler’s method above is not A-stable—it is only conditionally stable. Later in this chapter,

we will show a method that is A-stable for the problem (4.2). Before coming up with that appropriate

method for stiff problems, we consider their numerical solution in the following examples.

4.1.1 Examples

Example 4.2. Consider a system of initial value problems, see [6, page 335]:

dy1
dt

= 9y1 + 24y2 + 5 cos(t)− 1

3
sin(t), y1(0) =

4

3
,

dy2
dt

= −24y1 − 51y2 − 9 cos(t) +
1

3
sin(t), y2(0) =

2

3
,

which has the unique solution

y1(t) = 2 exp(−3t)− exp(−39t) +
1

3
cos(t),

y2(t) = − exp(−3t) + 2 exp(−39t)− 1

3
cos(t).

Here, the transient term e−39t in the solution causes this system to be stiff. Table 4.1 and Figure 4.1

show the errors when Euler’s method is used with the stepsize h = 0.1. We can see the maximum error

in each component is greater than 4.2077× 104. The huge oscillations also appear in Figure 4.1.

40

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

t |y1(ti)− y1,i| |y2(ti)− y2,i|

0.1 0.0003×104 0.0005×104

0.2 0.0009×104 0.0017×104

0.3 0.0024×104 0.0049×104

0.4 0.0071×104 0.0142×104

0.5 0.0205×104 0.0410×104

0.6 0.0595×104 0.1190×104

0.7 0.1725×104 0.3450×104

0.8 0.5003×104 1.0006×104

0.9 1.4509×104 2.9018×104

1.0 4.2077×104 8.4153×104

Table 4.1: Errors in the numerical solution obtained by applying Euler’s method to Example 4.2.

0 0.2 0.4 0.6 0.8 1
−5

0

5

10
x 10

4

t

y(
t)

Approx y
1

True y
1

Approx y
2

True y
2

Figure 4.1: The graph of Example 4.2 using Euler’s method.

As we have seen above, the explicit Euler method is not sufficient for such problems. A family of stable

methods to deal with the property of stiffness is the so-called “implicit” methods which we mentioned

in Remark 2.2. However, implicit methods lead to nonlinear systems of equations that must be solved.

Therefore, we first introduce some iterative methods for solving such problems.

4.2 Nonlinear Functions of Several Variables

As mentioned in [7, Chap. 1], there is a long history of finding the numerical solutions to nonlinear

problems, starting with the Babylonians over 3500 years ago. The fundamental methods like Fixed-

Point, Newton’s and Secant methods are carefully discussed in many standard textbooks on Numerical

Analysis (see, e.g. [17, 7]). These methods can be extended to nonlinear problems in several variables.

41

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

We here discuss Newton’s, Secant and Broyden’s methods which we use when applying an implicit scheme

to stiff problems.

In general, the system of n nonlinear equations in n unknowns has the form

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...
...

fn(x1, x2, . . . , xn) = 0,

(4.3)

where each function fi can be considered as mapping a vector x = (x1, x2, . . . , xn)
T in the n-dimensional

space Rn onto the real line R. By defining a function F mapping Rn into Rn

F (x1, x2, . . . , xn) =
(
f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)

)T
,

and using vector notation, the system (4.3) can be rewritten more compactly

F (x) = 0. (4.4)

The functions f1, f2, . . ., fn are called the coordinate functions of F .

The matrix

J(x) =



∂f1
∂x1

(x)
∂f1
∂x2

(x) . . .
∂f1
∂xn

(x)

∂f2
∂x1

(x)
∂f2
∂x2

(x) . . .
∂f2
∂xn

(x)

...
...

...
∂fn
∂x1

(x)
∂fn
∂x2

(x) . . .
∂fn
∂xn

(x)


,

is called the Jacobian of F at x. In the iterative methods we will discuss below, the computation of

Jacobian is required.

4.2.1 Iterative methods for solving systems of nonlinear equations

We first recall Newton’s method. With a scalar problem, suppose we want to solve f(x) = x where

f : R → R. The idea of Newton’s method is to choose an initial guess x(0) and then compute the

sequence

x(k+1) = x(k) − f(x(k))λ(x(k)),

where we choose λ so that x(k+1) is the point where the line through (x(k), f(xk)) with slope f ′(x(k)) cuts

the x-axis. Therefore, the formula for the iteration is

x(k+1) = x(k) − f(x(k))/f ′(x(k)).

This is a form of relaxation method:

x(k+1) = g(x(k)) = x(k) − ϕ(x)f(x(k)).

42

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

By choosing ϕ(x) = 1/f ′(x), we get the Newton’s method.

Using a similar approach in the n-dimensional case, the function G can be defined by

G(x) = x− J−1(x)F (x),

where J(x) is the Jacobian of F , and the functional iteration procedure evolves from selecting x(0) and

generating, for k = 1, 2, . . .

x(k+1) = G(x(k)) = x(k) − J−1(x(k))F (x(k)).

The following theorem tells us about the convergence of Newton’s method [6, Chap. 10].

Theorem 4.1. Let p be a solution of G(x) = x. Suppose a number δ > 0 exists such that

1.
∂gi
∂xj

(x) is continuous on Nδ = {x|∥x− p∥∞ < δ} for each i = 1, 2, . . . , n and j = 1, 2, . . . , n;

2.
∂2gi

∂xj∂xk
(x) is continuous and

∣∣∣∣ ∂2gi
∂xj∂xk

(x)

∣∣∣∣ ≤ M for some constant M , whenever x ∈ Nδ, for each

i = 1, 2, . . . , n, j = 1, 2, . . . , n and k = 1, 2, . . . , n;

3.
∂gi
∂xk

(p) = 0 for each i = 1, 2, . . . , n and k = 1, 2, . . . , n.

Then there exists a number δ̂ ≤ δ such that the sequence generated by x(k) = G(x(k−1)) converges

quadratically to p for any choice of x(0), provided that ∥x(0) − p∥ < δ̂. Moreover,

∥x(k) − p∥∞ ≤ n2M

2
∥x(k−1) − p∥2∞,

for each k ≥ 1.

In practice, it is very expensive to compute J−1(x). To avoid this, we could rewrite the scheme as

J(x(k))y = F (x(k)), (4.5)

and,

x(k+1) = x(k) − y.

So, (4.5) is a linear system that can be solved by Gaussian elimination.

We next investigate the numerical results obtained by applying this method to the following example.

Example 4.3. Consider the nonlinear system

6x3
1 + x1x2 − 3x3

2 − 4 = 0

x2
1 − 18x1x

2
2 + 16x3

2 + 1 = 0.

It has a solution at x̃ = (1, 1)T . We will use Newton’s method to obtain an approximation solution when

initial guess is x(0) = (2, 2)T and

F (x1, x2) = (f1(x1, x2), f2(x1, x2))
T ,

43

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

where

f1(x1, x2) = 6x3
1 + x1x2 − 3x3

2 − 4,

f2(x1, x2) = x2
1 − 18x1x

2
2 + 16x3

2 + 1.

The Jacobian matrix for the system is

J(x1, x2) =

 18x2
1 + x2 x1 − 9x2

2

2x1 − 18x2
2 −36x1x2 + 48x2

2

 ,

and  x
(k+1)
1

x
(k+1)
2

 =

 x
(k)
1

x
(k)
2

−

 y
(k)
1

y
(k)
2

 ,

where y(k) = (y
(k)
1 , y

(k)
2)t is the solution of linear system J(x(k))y(k) = F (x(k)). The results of applying

this iterative procedure are shown in Table 4.2. As seen in Table 4.2, the approximate solution approaches

the exact solution quickly after just 6 iterations. This is because, providing the initial guess is close enough

to the true solution, Newton’s method has quadratic convergence. That means the error at the ith step

is roughly the square of the error at the (i− 1)th step.

k x
(k)
1 x

(k)
2 ∥x(k) − x̃∥∞

0 2 2

1 1.3726 1.3403 5.046e-001

2 1.0784 1.0538 9.507e-002

3 1.0053 1.0027 5.989e-003

4 1.0000 1.0000 4.047e-005

5 1.0000 1.0000 1.260e-009

6 1.0000 1.0000 2.483e-016

Table 4.2: The convergence of Newton’s method applied to Example 4.3.

Two surfaces z = f1(x1, x2) = 6x3
1 + x1x2 − 3x3

2 − 4, and z = f2(x1, x2) = x2
1 − 18x1x

2
2 + 16x3

2 + 1, in

the range 0 ≤ x1, x2 ≤ 2 are shown in Figure 4.2. The intersection of two surfaces and the plane z = 0

shows us the solution of above system. In other words, the zero of this system is the intersection of two

curves f1(x1, x2) = 0 and f2(x1, x2) = 0.

44

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

0
0.5

1
1.5

2

0
0.5

1
1.5

2
−50

0

50

100

150

Figure 4.2: The surfaces z = f1(x1, x2) and z = f2(x1, x2).

Newton’s method shows its promise. However, in most situations, especially for mathematical models,

the exact evaluation of partial derivatives is inconvenient. As we know in the one dimensional case, we

depart from Newton’s method and replace the first derivative by the approximation

f ′(x1) ≈
f(x1)− f(x0)

x1 − x0
,

to obtain the Secant Method. In the n-dimensional case, a similar approach is employed for partial

derivative approximation

∂F

∂xi
(x1, x2, . . . , xn) ≈

1

h

(
F (x1, . . . , xi + h, . . . , xn)− F (x1, . . . , xn)

)
.

We now apply the Secant method to Example 4.3 with two initial guesses x(0) = (0.9, 0.9)T and

x(1) = (0.8, 0.8)T . The numerical results are shown in Table 4.3. We can see that the Secant method is

fast, but not as fast as Newton’s since the ratio of two successive errors obtained by applying the Secant

method is just the golden ratio α = (1 +
√
5)/2 ≈ 1.618.

45

4.2. NONLINEAR FUNCTIONS CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

k x
(k)
1 x

(k)
2 ∥x(k) − x̃∥∞

0 0.9000 0.9000 1.414e-001

1 0.8000 0.8000 2.828e-001

2 0.9774 0.9100 9.279e-002

3 1.6287 2.7124 1.824e+000

4 2.2535 2.3055 1.810e+000

5 0.9870 1.2701 2.704e-001

6 1.0166 1.2134 2.141e-001

7 1.0369 1.1022 1.087e-001

8 1.0118 1.0397 4.144e-002

9 1.0037 1.0110 1.162e-002

10 1.0005 1.0015 1.577e-003

11 1.0000 1.0001 7.173e-005

12 1.0000 1.0000 4.808e-007

13 1.0000 1.0000 1.503e-010

Table 4.3: The convergence of the Secant method applied to Example 4.3.

Another modified form of Newton’s method that does not require computation of the Jacobian is

Broyden’s method [7, §7.1.2]. The method is described as follows: for k = 1, 2, . . ., take

xk+1 = xk −A−1
k F (xk),

sk = xk+1 − xk,

yk = F (xk+1)− F (xk),

Ak+1 = Ak +
(yk −Aksk)(sk)

T

(sk)T sk
.

(4.6)

The initial matrix A0 is usually taken to be either J(x0) (the Jacobian of F at x0) or a finite difference

approximate to it.

Returning to Example 4.3, but applying Broyden’s method with initial guess x(0) = (0.9, 0.9)T . The

numerical results are shown in Table 4.4. Note that the approximate solution approaches the true solution

quite quickly after just six steps with the error of 2.97× 10−10.

46

4.3. THE IMPLICIT EULER METHOD CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

k x
(k)
1 x

(k)
2 ∥x(k) − x̃∥∞

0 0.9000 0.9000 1.414e-001

1 1.0090 1.0071 1.148e-002

2 0.9991 0.9997 9.397e-004

3 1.0000 0.9999 7.741e-005

4 1.0000 1.0000 1.628e-005

5 1.0000 1.0000 8.080e-008

6 1.0000 1.0000 2.970e-010

Table 4.4: The convergence of Broyden’s method applied to Example 4.3.

4.3 The Implicit Euler Method

We now introduce a numerical scheme that is stable for stiff problems no matter how large the stepsize

is. The Explicit Euler’s method (2.5) is reframed as an Implicit Euler method if the right-hand side is

evaluated at ti+1 instead of ti:

yi+1 = yi + hf(ti+1,yi+1). (4.7)

But note that yi+1 appears on both sides (hence the name “implicit”). This scheme, expressed as a

Butcher tableau, is in Table 4.5.

1 1

1

Table 4.5: Butcher tableau for the Implicit Euler method.

As mentioned, (4.7) leads to a nonlinear equation F (x) = 0 that must be solved. The nonlinear system

of equations can be solved by iterative methods such as Newton’s method introduced in Section 4.2.

To understand more about the implicit Euler method and how it works, we reconsider (4.1). The

scheme now leads to

yi+1 = yi + hf(ti+1, yi+1) = yi − 20hyi+1.

Hence

yi+1 =
1

1 + 20h
yi =

1

(1 + 20h)i+1
.

So now, for any h > 0, the term
1

(1 + 20h)i+1
is less than 1. Therefore, the approximate solution tends

to the equilibrium solution 0. We next investigate the numerical solutions of some stiff problems. First,

we begin with a simple single equation.

Example 4.4. Consider the following initial value problem consisting of a single equation:

y′ = 10(1− y), y(0) = 1/2,

47

4.3. THE IMPLICIT EULER METHOD CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

on the interval [0,10]. The solution is easy to determine: y(t) = 1 − e−10t/2. For t > 1, the solution

has already reached its equilibrium 1 within 4 decimal places, and it never moves any farther away from

1. The differential equation is stiff due to the term e−10t. Figure 4.3 shows the contrast between the

explicit and implicit Euler methods with the number of steps N = 32. Note that with the explicit Euler

method, the maximum error is greater than 1010. We also see that there are many oscillations in the left

of Figure 4.3.

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1
x 10

10

t

y(
t)

Euler’s Method
True Solution

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t
y(

t)

Implicit Euler Method
True Solution

Figure 4.3: Example 4.4 using Explicit Euler Method (left) and Implicit Euler Method (right).

We will see the efficiency of the Implicit Euler Method by applying this scheme to Example 4.2

with the stepsize h = 0.1. The results are in Table 4.6 and Figure 4.4. We note that the result shown

in Table 4.6 is far more accurate than shown in Table 4.1. Moreover, compared with Figure 4.1 there is

no oscillation in the approximate solution as seen in Figure 4.4.

t |y1(ti)− y1,i| |y2(ti)− y2,i|

0.1 0.1280 0.3399

0.2 0.0429 0.0406

0.3 0.0866 0.0304

0.4 0.0937 0.0440

0.5 0.0894 0.0440

0.6 0.0809 0.0401

0.7 0.0710 0.0353

0.8 0.0609 0.0303

0.9 0.0514 0.0256

1.0 0.0429 0.0213

Table 4.6: Errors in the numerical solution generated by the Implicit Euler Method applied to Example 4.2.

48

4.4. NEW MODEL FOR GLUCOSE INSULIN CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

y(
t)

Approx y

1

True y
1

Approx y
2

True y
2

Figure 4.4: The graph of the computed solution to Example 4.2 using the Implicit Euler Method.

Returning to the Problem (4.2), we now show that the Implicit Euler Method is A-stable. Employing

the Implicit Euler Method for y′ = λy with y(0) = y0 and λ < 0, we get

yi+1 = yi + hyi+1,

then,

yi+1 =
yi

1− hλ
= . . . =

y0
(1− hλ)i+1

,

Obviously,

∣∣∣∣ 1

1− hλ

∣∣∣∣ < 1 for all h > 0. Hence

Q(hλ) < 1, ∀hλ < 0,

so the Implicit Euler Method is A-stable.

4.4 A New Mathematical Model for Glucose and Insulin Levels

In a recent development, Liam O’Callaghan and Petri Piiroinen [14] have proposed an improved model

based on the Intensive Care Unit-Minimal Model (3.1) to predict blood glucose (i.e., glycemia) levels of

critically ill patients who are receiving glucose and insulin infusions.

v1
dG1

dt
=

k1
(
G2(t)−G1(t)

)
km1 +G1(t) +G2(t)

−
(
k2 + k0I3(t)

)
G1(t)

km0 +G1(t)
+ FG(t),

v2
dG2

dt
=

k1
(
G1(t)−G2(t)

)
km1 +G1(t) +G2(t)

+
k3gly

1 + exp
(
k31(I3(t)− b1)

) − k3G2(t)

1 + exp
(
k31(b2 − I3(t))

) ,
v3

dI1
dt

= k5
(
Imax − I1(t)

)
− k6I1(t)

1 + exp
(
k61(c1 −G1(t))

) ,
v4

dI2
dt

=
k6I1(t)

1 + exp
(
k61(c1 −G1(t))

) − k7I2(t)

km7 + I2(t)
− k8I2(t) + FI(t),

v5
dI3
dt

=
k7I2(t)

k7m + I2(t)
− k9I3(t),

(4.8)

49

4.4. NEW MODEL FOR GLUCOSE INSULIN CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

where

• G1 is plasma glucose concentration–this is the main output of interest from the model;

• G2 is the concentration of glucose in hepatocytes (intracellular);

• I1 is the concentration of insulin in pancreatic β-cells;

• I2 is the plasma insulin concentration;

• I3 is concentration of bound insulin;

• and the vi are the volumes of the respective compartments;

• FG(t) and FI(t) are the instantaneous glucose and insulin infusion rates, respectively. These are

the primary inputs for the model.

An explanation of other terms can be found in [14].

Remark 4.1. The model (4.8) was proposed in December 2010 and formed the basis for the investigations

in this chapter. In March 2011 a further modification of the model was given. We will use that more

recent model in Chapter 5. However, both models present the same challenges for numerical solution, so

we work with the original model here.

The Figure 4.5 below shows the solutions of the five components for typical values of the parameters.

The diagram also suggests that the system (4.8) may be stiff. For example, the second subgraph shows

how quickly the solution G2 changes over a short period of time.

0 5000

130

140

150

160

170

G
1

0 5000
0

100

200

300

400

G
2

0 5000
0

10

20

30

I
1

0 5000

4

6

8

10

I
2

0 5000

2

4

6

8

10

I
3

Figure 4.5: The solution of five components.

4.4.1 Numerical Solution using the Explicit Euler Method

Table 4.7 and Figure 4.6 show the results for Euler’s method for (4.8) with the real data of Patient 102 [14].

For this calculation, we have used the built-in differential equation solver ode45 in Matlab to create a

benchmark solution. Because of the stiffness of the model, Euler’s method needs a very large number of

50

4.4. NEW MODEL FOR GLUCOSE INSULIN CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

steps, N ≈ 65536, to compute a stable solution. When N is smaller, the computed solution is unstable,

and has wild oscillations. Indeed, some values cannot be represented properly in Matlab and are returned

as NaN, which stands for “Not a Number”. We can visualize the Table 4.7 using a log-log plot. Note that

all three components G2, I1 and I2 return NaN with N < 65536; and are not plotted.

N G1 G2 I1 I2 I3

4096 NaN NaN NaN NaN 4.65×101

8192 1.83×101 NaN NaN NaN 4.46×101

16384 1.02×101 NaN NaN NaN 4.22×101

32768 1.36×101 NaN NaN NaN 4.33 ×101

65536 1.41×10−1 1.43×101 2.24×101 3.71×10−1 2.57×10−2

131072 7.06×10−2 7.13×100 6.90×100 1.15×10−1 1.28×10−2

262144 3.53×10−2 3.57×100 2.52×100 4.18×10−2 6.43×10−3

524288 1.76×10−2 1.78×100 1.15×100 2.07×10−2 3.21×10−3

1048576 8.82×10−3 8.92×10−1 5.48×10−1 1.04×10−2 1.61×10−3

Table 4.7: Errors in the numerical solution generated by the explicit Euler method to (4.8).

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

N

E
rr

or

G

1

G
2

I
1

I
2

I
3

Figure 4.6: A log-log plot of the errors shown in Table 4.7.

4.4.2 Numerical Solution using the Implicit Euler Method

As we can see from previous examples, the implicit Euler method is adequate for stiff problems. In

particular, when using the explicit Euler method, the model (4.8) needs a very large number of steps to

achieve a meaningful result as we see in Table 4.7. Because errors in real world models are often dominated

by errors in measured data, it can be more important that the numerical solution is stable, than being

highly accurate. So it is very useful to have a scheme that can produce a reasonable solution, even

51

4.5. CONCLUSION CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

using large time steps. We now employ the implicit Euler method. In our experiments for this problem,

Newton’s Method for solving the system of nonlinear equations has proved successful, but expensive. We

instead use Broyden’s method (4.6). The numerical result for the glucose-insulin model (4.8) is shown in

Table 4.8. We emphasize that this result is much more accurate than that shown in Table 4.7 when N

is small. For this computation, the tolerance for nonlinear solver is set by 10−5. Figure 4.7 shows that

the method tends to be convergent even with a quite small number of steps N = 4096. Note that when

N is large enough so that the explicit Euler method is stable, it is just as accurate as the implicit Euler

method.

N G1 G2 I1 I2 I3

4096 2.26e+000 2.10e+002 2.97e+001 1.51e+000 4.10e-001

8192 1.13e+000 1.12e+002 2.80e+001 8.99e-001 2.07e-001

16384 5.66e-001 5.69e+001 2.15e+001 5.54e-001 1.03e-001

32768 2.81e-001 2.84e+001 1.27e+001 3.13e-001 5.13e-002

65536 1.44e-001 1.45e+001 6.85e+000 1.66e-001 2.62e-002

Table 4.8: Errors in the numerical solution obtained by applying the Implicit Euler Method to (4.8).

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

N

E
rr

or

G

1

G
2

I
1

I
2

I
3

Figure 4.7: A log-log plot of the errors shown in Table 4.8.

4.5 Conclusion

The stiffness phenomenon is very common in ordinary differential equations, especially in the problems

that come from real-world models. The explicit schemes discussed in Chapter 2 are not appropriate for

such problems, but the implicit schemes studied in this chapter are. The numerical result for the new

model proposed by colleagues where the stiffness is dominant is achieved by using the robust implicit

52

4.5. CONCLUSION CHAPTER 4. SOLUTION OF STIFF DIFF EQNS

framework. Unfortunately, however, it is not feasible to introduce a nonlinear solver into the DBN. In

the next chapter we will introduce a method that is feasible. However, to evaluate the accuracy of that

method, it is important that we be able to generate a robust benchmark solution. The implicit scheme

that we have described above—and more sophisticated Matlab implementations of high-order implicit

schemes—are used to do this.

53

Chapter 5

An Adaptive Time Stepping

Algorithm

We introduce an adaptive non-uniform time stepping algorithm in this chapter. The fundamental differ-

ence between this framework and the algorithm we presented in Section 3.2 is that it does not require a

fixed time step. This technique allows the stepsize to vary flexibly to adapt to the dynamics of the system.

Using it we can compute accurate solutions to our main model problem in a highly efficient manner, by

using short time steps only in regions of the domain where the solution is highly variable. We describe the

adaptive time-stepping algorithm and its user-chosen parameters in Section 5.1. Following that, we apply

the technique to a variant of the well-known van der Pol oscillator, whose solution transitions between

periods of rapid change and others of relative stability. We apply this algorithm to the van der Pol exam-

ple since this equation has many of the same qualities as the glucose insulin model in Chapter 4, but is

simpler. Also, it is widely used in the literature as an example of a model of physiological systems [2], and

as a classical example of a stiff problem [3] . We show how to tailor the parameters in the algorithm to

optimise the numerical result for this specific problem. Finally, in Section 5.3 we apply the scheme to the

latest model developed for the glucose insulin problem and show that the results obtained are far more

accurate than the equally spaced stepsize scheme. But first, we now describe the adaptive algorithm.

5.1 The Adaptive Time Stepping Algorithm

The key idea of a variable stepsize method is to prescribe a tolerance that the error at each step should

not exceed, and to monitor the error to see if the tolerance has been met. If the tolerance is exceeded,

then the algorithm repeats the step with a reduced stepsize. If the error tolerance is met, it accepts

the step and chooses a new stepsize that should be appropriate for the next step. A good local error

estimator is needed to drive the algorithm. For example, for Euler’s method we can estimate the local

54

5.1. ADAPTIVE TIME-STEPPING ALGORITHM CHAPTER 5. ADAPTIVE TIME STEPPING

discretization error (2.6) at each step by using the fact that:

|εi| ≤
h2
i

2
y′′(ξ),

where ξ ∈ [ti−1, ti]. Using the backward difference formula, we get:

|εi| ≤
h2
i

2

∣∣∣∣y′(ti)− y′(ti−1)

hi−1

∣∣∣∣
=

h2
i

2

∣∣∣∣f(ti, yi)− f(ti−1, yi−1)

hi−1

∣∣∣∣ = h2
i

2
∆.

where ∆ =

∣∣∣∣f(ti, yi)− f(ti−1, yi−1)

hi−1

∣∣∣∣.
Let Tol denote the prescribed tolerance. Following [3, §202], we want to ensure that |εi| ≤ Tol, so if

the tolerance is not met, the step is repeated with a new possible stepsize hnew which can be determined

as follows:

hnew ≈ q

√
2Tol

∆
,

where q ∈ (0, 1) is set as a “safety factor” for the successful step. In order to maintain efficiency, if

the estimated error is significantly less than Tol, the stepsize is increased with a scaling based on a

user-chosen parameter for the next step.

5.1.1 Algorithm pseudo-code and user-chosen parameters

The adaptive algorithm is shown below. It features four user-specified parameters. They are

• The error tolerance, Tol. The algorithm attempts to ensure that the local discretization error (2.6)

introduced at each step is no more than this value. The actual accumulated error will be larger,

typically
∑

|εi| ≈ N max |εi|. Also, since it is based on an estimate for the error, it is not exact.

• The “safety factor” q. In lines 6 and 13 of the algorithm below, the term

√
2Tol

∆
is an estimate for

the stepsize h required to achieve the desired truncation error. But if it overestimates the correct

value even by a tiny amount we will need an extra step. To avoid this, we choose q ∈ (0, 1) and set

h = q

√
2Tol

∆
.

• The maximum stepsize ratio M1. When the solution switches from a region in which its derivative

changes rapidly to a region in which its derivative changes slowly, the algorithm will increase the

stepsize. How quickly this happens depends on M1. However, we know that having too large a change

in stepsize can be bad for the error. Therefore, M1 controls how quickly the stepsize increases. So

we should always have M1 > 1, but not too large.

• The minimum stepsize ratio M2. The purpose of the while loop from lines 11 to 17 is to reduce the

stepsize until the tolerance is achieved. Taking M2 < 1 ensures that h will always be reduced at

each iteration of the loop, and so that it will eventually converge. This is likely to occur when the

solution moves from a region where it varies slowly to where it varies rapidly.

55

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

Algorithm 5.1 The adaptive time step algorithm

1: while (tstep ≤ tN) do

2: if (step = 1) then

3: h = h0 (Initial guess for time step)

4: else

5: ∆ =
1

h
max

(
|f(tstep, ystep)− f(tstep−1, ystep−1)|

)
(Approximate of y′′)

6: h = min

(
q

√
2Tol

∆
, h×M1

)
7: end if

8: tstep+1 = tstep + h

9: ystep+1 = ystep + hf(tstep, ystep);

10: ∆ =
1

h
max

(
|f(tstep+1, ystep+1)− f(tstep, ystep)|

)
(estimate the local error)

11: while
∆h2

2
> Tol do

12: Rejections = Rejections+ 1;

13: h = min

(
q

√
2Tol

∆
, h×M2

)
(reduce the step length)

14: tstep+1 = tstep + h

15: ystep+1 = ystep + hf(tstep, ystep);

16: ∆ =
1

h
max

(
|f(tstep+1, ystep+1)− f(tstep, ystep)|

)
17: end while

18: end while

5.2 Van der Pol’s Equation

5.2.1 Overview

To demonstrate the benefits of the adaptive non-uniform algorithm, we investigate a model based on the

classic van der Pol oscillator (see, e.g. [3, §105]). Although originally proposed for modelling electrical

circuits, it has found many applications. Most relevant to this study are the wide variety of applications

in biology, e.g. [2, Chap. 6]. Here we present the van der Pol equation as a system of two initial value

problems:

dy1
dt

=
1

ϵ

(
y2 −

y31
3

+ y1

)
, y1(0) = 1,

dy2
dt

= a− y1, y2(0) = 1.

(5.1)

where a and ϵ are parameters. This is a typical example of a stiff problem. Furthermore, since its

dynamics are non-uniform and not known in advance, it is a suitable test problem for our proposed

algorithm.

Figure 5.1(a) below shows the behavior of the solution on the interval [0, 10] with a = 0.5 and ϵ = 0.1.

56

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

Since we do not know the exact solution of this problem, we use the Runge-Kutta 4 method (Section 2.2.7)

with a very large number of steps, N = 219, to create a benchmark solution. From our perspective, the

most important term is ϵ. For smaller values of ϵ the problem is stiff. In particular, 5.1(b) shows the

solution when ϵ = 0.01. Notice that the solution changes more rapidly for the smaller value of ϵ.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y
1

y
2

(a) ϵ = 0.1

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y
1

y
2

(b) ϵ = 0.01

Figure 5.1: Solutions to (5.1)

5.2.2 Numerical Result

We apply Euler’s method to (5.1) as shown in Table 5.1. Note that the error of the first component y1

is quite large even with N = 279, the largest number of steps in Table 5.1. In particular, the computed

solution obtained with N = 165 steps of equal size is shown in Figure 5.2. Here we use N = 165 steps

because that corresponds to the number of steps taken by the adaptive algorithm with Tol = 2−4, and

permits us to do a direct comparison. Even though the computed solution for y2 cannot be distinguished

from the benchmark, we can observe many oscillations in the approximate solution to y1. The numerical

method does not successfully capture the model dynamics. For example, from the time t = 5 onward, a

significant lag is observed.

N max
i=0,1,...,N

|y1(ti)− y1,i| max
i=0,1,...,N

|y2(ti)− y2,i|

117 3.87e+000 1.84e+000

134 3.68e+000 1.58e+000

165 3.26e+000 9.92e-001

216 2.93e+000 7.14e-001

279 2.66e+000 5.55e-001

Table 5.1: Errors in the numerical solution to (5.1) obtained using Euler’s method with uniform steps.

57

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Euler y
1

Benchmark y
1

Euler y
2

Benchmark y
2

Figure 5.2: Euler’s Method with uniform steps applied to (5.1) with N = 165.

Now we compute an approximate solution using the adaptive method with the same numbers of steps

as in Table 5.1. These result from different tolerances as shown in Table 5.2, along with the corresponding

estimated errors. For this computation we took q = 0.9, M1 = 2 and M2 = 0.5 as the parameters in the

adaptive algorithm. We emphasize that these results are more accurate than the results in Table 5.1. For

example, with N = 279 the errors in y1 and y2 are 7 times smaller and 12 times smaller, respectively.

In Figure 5.3 we show the graph of the solution obtained with a tolerance of 2−4. The resulting

value of N is 165, so we can compare with the result shown in Figure 5.2. Notice that now the solution

dynamics are captured quite well, and there are no obvious oscillations or delay.

Tol N max
i=0,1,...,N

|y1(ti)− y1,i| max
i=0,1,...,N

|y2(ti)− y2,i|

2−2 117 3.34e+000 1.00e+000

2−3 134 2.42e+000 4.88e-001

2−4 165 1.07e+000 1.81e-001

2−5 216 4.87e-001 7.60e-002

2−6 279 3.86e-001 4.49e-002

Table 5.2: Errors in the computed solution obtained by the adaptive algorithm applied to (5.1).

58

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Adaptive y
1

Benchmark y
1

Adaptive y
2

Benchmark y
2

Figure 5.3: The numerical solution to (5.1) obtained by the adaptive algorithm with N = 165.

5.2.3 Tuning the parameters

The algorithm we have given above is intended for use in a DBN. To ensure the algorithm efficiency, we

need to investigate the best choice of the user-chosen parameters, q, M1 and M2. In Table 5.3, we show the

results of running the adaptive scheme with various values of the tolerances, and typical values of q = 0.9,

M1 = 2, and M2 = 0.5. Since the stepsizes in adaptive algorithm are allowed to vary, the sixth and seventh

columns in Table 5.3 show the corresponding maximum and minimum stepsize together with their ratio in

the second last column. The last column shows the run time in seconds. The third column is the number

of rejections that occurs when applying the adaptive algorithm. Recalling line 11 of Algorithm 5.1, we

see that if the proposed stepsize gives a computed solution that does not satisfy the error tolerance, then

that step is rejected, and a new smaller step taken. The Rejections counter enumerates the number of

times this happens. The smaller this number, the more efficient the algorithm is.

Tol N Rejections max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| maxhi minhi Ratio Time

2−6 279 145 3.86e-001 4.49e-002 0.2193 0.0056 39.45 0.0385

2−7 361 158 2.78e-001 3.17e-002 0.1613 0.0042 38.46 0.0341

2−8 454 122 2.89e-001 3.50e-002 0.1144 0.0034 33.27 0.0401

2−9 562 24 3.44e-001 4.30e-002 0.0811 0.0026 31.49 0.0418

2−10 791 28 2.50e-001 3.15e-002 0.0575 0.0021 27.41 0.0591

2−11 1114 32 1.79e-001 2.25e-002 0.0408 0.0016 25.83 0.0827

2−12 1567 29 1.27e-001 1.59e-002 0.0289 0.0013 22.89 0.1168

2−13 2208 27 8.91e-002 1.12e-002 0.0205 0.0009 22.53 0.1619

2−14 3115 25 6.29e-002 7.89e-003 0.0145 0.0006 22.53 0.2291

2−15 4395 16 4.41e-002 5.52e-003 0.0103 0.0005 22.48 0.3214

Table 5.3: Errors in the computed solution obtained by applying the adaptive algorithm to (5.1) with q = 0.9,

M1 = 2 and M2 = 0.5.

It is easier to visualize the errors by using a log-log scale plot as in Figure 5.4. Because of the stiffness

59

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

of the problem, we see that the errors increase at first. Clearly, for a small enough value of the tolerance

(i.e. large number of steps) the errors reduce, and method is convergent for large enough N .

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Error

1

Error
2

Figure 5.4: Errors in the computed solution using the adaptive algorithm for (5.1).

Recall that the parameter q is the “safety factor”: its purpose is to adjust the stepsize to something

just less than the maximum recommended. We first investigate its optimal value by fixing Tol = 2−10,

M1 = 2 and M2 = 0.5. The results are shown in Table 5.4. From this, we see that a choice of q = 0.9 gives

the best result in terms of the total number of steps computed (i.e., the sum of the number of accepted

and rejected steps). However, any value in the range [0.75, 0.9] appears to give acceptable results.

q N Rejections N +Rej max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| maxhi minhi Ratio

0.10 6979 1 6980 2.76e-002 3.45e-003 0.006 0.0003 22.49

0.20 3489 1 3490 5.48e-002 6.84e-003 0.013 0.0006 22.54

0.30 2326 1 2327 8.16e-002 1.02e-002 0.019 0.0009 22.47

0.40 1744 1 1745 1.08e-001 1.34e-002 0.026 0.0011 22.64

0.50 1395 1 1396 1.34e-001 1.66e-002 0.032 0.0014 22.68

0.60 1164 3 1167 1.62e-001 2.01e-002 0.038 0.0017 22.57

0.65 1077 7 1084 1.77e-001 2.20e-002 0.042 0.0018 22.63

0.70 1001 8 1009 1.90e-001 2.36e-002 0.045 0.0020 22.79

0.75 936 11 947 2.06e-001 2.58e-002 0.048 0.0021 22.84

0.80 882 18 900 2.23e-001 2.80e-002 0.051 0.0023 22.75

0.90 791 28 819 2.50e-001 3.15e-002 0.058 0.0021 27.41

0.95 874 270 1144 1.90e-001 2.44e-002 0.061 0.0017 36.66

0.99 1080 733 1813 2.97e-001 3.90e-002 0.063 0.0014 44.56

Table 5.4: Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with various q.

Now recall that the purpose of M1 is to control the maximum increased stepsize. We then fix q = 0.9,

M2 = 0.5 and Tol = 2−10, and investigate how the algorithm behaves for different values of M1. We

observe that there are no significant changes of the results in Table 5.5, so the range of suitable values of

M1 for this example is [1.2,2]. Typically, we will pick M1 = 1.5.

60

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

M1 N Rejections N +Rej max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| maxhi minhi Ratio

1.10 831 12 843 1.82e-001 2.14e-002 0.0544 0.0020 27.843

1.20 796 14 810 2.34e-001 2.92e-002 0.0565 0.0024 24.009

1.40 790 19 809 2.47e-001 3.10e-002 0.0573 0.0019 30.197

1.50 790 22 812 2.50e-001 3.13e-002 0.0578 0.0019 31.156

1.60 791 26 817 2.52e-001 3.16e-002 0.0579 0.0020 28.368

1.75 790 26 816 2.51e-001 3.15e-002 0.0577 0.0022 26.814

2.00 791 28 819 2.50e-001 3.15e-002 0.0575 0.0021 27.412

3.00 791 28 819 2.50e-001 3.15e-002 0.0575 0.0021 27.407

5.00 791 28 819 2.50e-001 3.15e-002 0.0575 0.0021 27.407

10.00 791 28 819 2.50e-001 3.15e-002 0.0575 0.0021 27.407

20.00 791 28 819 2.50e-001 3.15e-002 0.0575 0.0021 27.407

Table 5.5: Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with various values

of M1.

Finally, we investigate the range of choices for M2—whose role is to control the minimum stepsize

decrease. It gives a lower bound for a new stepsize to avoid a hugely sudden reduction in two successive

steps. We fix q = 0.9, M1 = 1.5 and Tol = 2−10, and let M2 vary from 0.01 to 20. Table 5.6 shows a

sample of the results. From these we suggest M2 = 0.9 is the best choice in terms of the accuracy and

computational cost.

M2 N Rejections N +Rej max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| maxhi minhi Ratio

0.10 824 14 838 2.54e-001 3.20e-002 0.0577 0.0004 140.333

0.25 799 14 813 2.54e-001 3.20e-002 0.0573 0.0011 50.042

0.40 796 21 817 2.50e-001 3.15e-002 0.0575 0.0015 37.681

0.50 790 22 812 2.50e-001 3.13e-002 0.0578 0.0019 31.156

0.60 788 27 815 2.50e-001 3.13e-002 0.0574 0.0024 24.391

0.75 784 26 810 2.47e-001 3.09e-002 0.0577 0.0025 22.732

0.80 783 24 807 2.47e-001 3.08e-002 0.0576 0.0025 22.684

0.85 783 26 809 2.46e-001 3.06e-002 0.0577 0.0025 22.708

0.90 782 22 804 2.44e-001 3.04e-002 0.0576 0.0025 22.667

0.95 782 22 804 2.44e-001 3.04e-002 0.0576 0.0025 22.667

Table 5.6: Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with various values

of M2.

We now regenerate results corresponding to those in Table 5.3, but now with the selected set of

parameters q = 0.9, M1 = 1.5 and M2 = 0.9, and show the results in Table 5.7. The corresponding

log-log plot is shown in Figure 5.5. Note that the errors decrease for all values of N . Furthermore, the

number of rejections in this case is less than the number of rejections in Table 5.3.

61

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

Tol N Rejections max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| maxhi minhi Ratio Time

2−6 233 97 4.56e-001 9.22e-002 0.2197 0.0096 22.80 0.0353

2−7 304 113 4.20e-001 5.00e-002 0.1494 0.0070 21.47 0.0290

2−8 406 95 3.76e-001 4.58e-002 0.1136 0.0050 22.75 0.0361

2−9 556 24 3.37e-001 4.19e-002 0.0810 0.0036 22.73 0.0482

2−10 782 22 2.44e-001 3.04e-002 0.0576 0.0025 22.67 0.0589

2−11 1102 24 1.74e-001 2.17e-002 0.0410 0.0018 22.68 0.0830

2−12 1557 25 1.24e-001 1.55e-002 0.0289 0.0013 22.58 0.1169

2−13 2198 22 8.79e-002 1.10e-002 0.0205 0.0009 22.60 0.1645

2−14 3105 20 6.21e-002 7.76e-003 0.0145 0.0006 22.54 0.2328

2−15 4390 19 4.39e-002 5.49e-003 0.0102 0.0005 22.47 0.3264

Table 5.7: Errors in the computed solution obtained by using the adaptive algorithm to (5.1) with q = 0.9,

M1 = 1.5 and M2 = 0.9.

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

N

E
rr

or

Error

1

Error
2

Figure 5.5: A log-log plot of the errors shown in Table 5.7.

Finally, let us compare the results in Table 5.7 with Euler’s Method (uniform stepsize) using the same

number of steps as in Table 5.8 to see the advantage of the adaptive algorithm. Note that, for N = 4390

we achieve an accuracy in y1 and y2 of 2.89× 10−1 and 3.56× 10−2 respectively in 0.1449 seconds. The

adaptive algorithm can surpass this using only N = 782 and in 0.0589 seconds.

62

5.2. VAN DER POL’S EQUATION CHAPTER 5. ADAPTIVE TIME STEPPING

N Rejections max
i=0,...,N

|y1(ti)− y1,i| max
i=0,...,N

|y2(ti)− y2,i| Stepsize Time

233 0 2.85e+000 6.61e-001 0.0429 0.1148

304 0 2.57e+000 5.09e-001 0.0329 0.0636

406 0 2.22e+000 3.83e-001 0.0246 0.0136

556 0 1.85e+000 2.80e-001 0.0180 0.0311

782 0 1.44e+000 2.00e-001 0.0128 0.0583

1102 0 1.08e+000 1.42e-001 0.0091 0.0366

1557 0 7.91e-001 1.00e-001 0.0064 0.0515

2198 0 5.70e-001 7.11e-002 0.0045 0.0727

3105 0 4.07e-001 5.03e-002 0.0032 0.1031

4390 0 2.89e-001 3.56e-002 0.0023 0.1449

Table 5.8: Errors in the computed solution to (5.1) obtained by using Euler’s Method using uniform steps.

With the Tol = 2−8, M1 = 1.5, q = 0.9 and M2 = 0.9, the Figure 5.6 shows the stepsizes on the interval

[0, 10]. The top figure shows the approximate solution of each components. The middle figure presents

the corresponding stepsize used. We can see that when the solution, and particularly the first component,

is changing rapidly, the algorithm proposed very small time steps. Then, as the solution transitions to

varying more slowly, the stepsizes increase. The third figure shows the corresponding errors. We can

observe that the error is larger where the solution changes dramatically.

0 2 4 6 8 10

−2

−1

0

1

2

t

y(
t)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

t

S
te

ps
iz

e

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

t

E
rr

or

Figure 5.6: The approximate solution (top), the stepsizes (middle) and the corresponding errors (bottom) using

the adaptive algorithm.

63

5.3. THE UPDATED MODEL CHAPTER 5. ADAPTIVE TIME STEPPING

5.3 The Updated Model

As mentioned earlier in Remark 4.1, our colleagues Liam O’Callaghan and Petri Piiroinen have recently

produced the following model [14]. Our task is to design an efficient algorithm that can compute a reliable

solution efficiently and that can be incorporated into the DBN. The model is:

v1
dG1

dt
=

k1
(
G2(t)−G1(t)

)
km1 +G1(t) +G2(t)

−
(
k2 + k0I3(t)

)
G1(t)

km0 +G1(t)
+ FG(t),

v2
dG2

dt
=

k1
(
G1(t)−G2(t)

)
km1 +G1(t) +G2(t)

+
k3gly

1 + exp
(
k31(I3(t)− b1)

) − k3G2(t)

1 + exp
(
k31(b2 − I3(t))

) ,
v3

dI1
dt

= k5
(
Imax − I1(t)

)
− k62I1 − k6I1(t)

1 + exp
(
k61(c1 −G1(t))

) ,
v4

dI2
dt

=
k6I1(t)

1 + exp
(
k61(c1 −G1(t))

) + k62I1 − k7I2(t)

km7 + I2(t)
− k8I2(t) + FI(t),

v5
dI3
dt

=
k7I2(t)

k7m + I2(t)
− k9I3(t).

(5.2)

Compared with (4.8), the terms in bold have been added to the new model.

5.3.1 Parameters and Initial Conditions

As discussed in [14], there are many things that effect the body’s behavior and response to glucose

and insulin infusions, such as an individual’s evolving hormonal situation. Therefore, it is inevitable that

model parameters are subject to change even over a short period of time. In particular, to fit the observed

data for Patient 102, five subintervals have been chosen, each with a different set of parameter values.

The subintervals (in minutes) are [663, 903], [903, 1320], [1320, 2700], [2700, 3611] and [3611, 4680]. Their

specific values are presented in next section. In [14], the values for vi and the initial values given in

Table 5.9 are proposed.

Parameter Value Parameter Value

v1 120 G1 172.8

v2 480 G2 23.383

v3 5 I1 3.24845

v4 80 I2 44.2727

v5 172 I3 9.67814

Table 5.9: Initial values for (5.2).

The values of FG, the rate of infusion of glucose, and FI , the rate of infusion of insulin, can be changed

over time. Their values are given in Table 5.10.

64

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

Value Time

FG 0 663 ≤ t ≤ 1170

FG 130 1170 < t ≤ 4680

FI 50 663 ≤ t ≤ 1763

FI 100 1763 < t < 3522

FI 50 3522 ≤ t ≤ 4680

Table 5.10: Values of FG and FI in (5.2).

Table 5.11 shows values of other parameters for each of the five intervals as recommended. For more

detailed discussion, we refer readers to [14].

663− 903 903− 1320 1320− 2700 2700− 3611 3611− 4680

k1 7.86956 1252.37000 168.49800 97.41470 211.40400

k1m 94.60890 7.31446 166.22300 84.17190 146.01000

k2 2.94199 144.28500 153.46600 30.24230 255.24000

k0 1.92455 2107.18000 146.45200 26.30920 3.16033

k0m 23.35690 99.46770 30.99500 11.06300 13.84840

k3 25.58330 1.24518 1.87608 10.83570 45.22780

k31 9.75146 1.17483 1.84850 2.19118 1.02463

b1 1.05747 231.69200 5.98174 74.76230 163.70300

b2 116.51500 468.50300 136.79000 541.33200 1186.60000

gly 447.43800 14.58550 160.70800 2.91558 38.32260

k5 47.21230 23.01750 1.89866 2.55946 29.28230

Imax 1.71010 28.27270 4.17840 1.74772 8.30618

k6 1.71618 3.27457 2.59920 14.20370 115.27400

k61 1.55723 1.49683 3.78112 2.04527 3.58975

k62 5.56218 2.80181 4.00191 1.15245 1.49800

c1 538.54600 149.33100 76.51730 1086.64000 131.55200

k7 1.48927 3.04619 15.59210 88.86110 55.17500

k7m 48.58910 41.79710 1.68236 14.34170 3.95976

k8 4.11877 5.58924 49.75270 9.70765 1.08533

k9 2.15535 1.79874 8.84896 4.04624 1.54755

Table 5.11: Values of other parameters in (5.2).

5.4 Numerical Results

5.4.1 Some observations

In this section, we study the numerical solution to (5.2) for specific data corresponding to Patient 102.

The duration of the simulation is from t = 663 minutes to t = 4680 minutes. We will mostly focus on

65

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

the results for Euler’s Method and the adaptive algorithm. We also suggest a refinement of the adaptive

scheme to improve the efficiency for this particular problem.

As discussed in the previous section, the sets of values of parameters are given in five separate intervals,

shown in Table 5.11. In addition, we also have observed glucose values from Patient 102. In Figure 5.7, we

show the computed solution obtained by using ode15s, a built-in differential equation solver in Matlab.

It is based on multistep method with variable order, and is designed to be particularly suitable for stiff

problems [16]. Therefore, it is a suitable for generating a benchmark solution. The coloured diamonds

are the observed glucose values.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
100

110

120

130

140

150

160

170

180

190

G

1

Observed Glucose

Figure 5.7: Predicted and observed blood glucose levels for t ∈ [663, 4680].

The new model and the changes of parameter values over time present some numerical difficulties. In

fact, the model (5.2) is solved on a long interval of 4017 minutes. This in turn is divided into five separate

subintervals corresponding to different sets of values of parameters. The values of parameters vary very

widely; that can adversely effect numerical methods. For example, Figure 5.8 shows the computed

G1 using Euler’s Method with N = 20443 uniform steps (blue line). Note that it does not suggest a

meaningful result for G1.

66

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

t (minutes)

Euler method
ode15s
Observed

Figure 5.8: The G1 obtained by using Euler’s Method with N = 20443 uniform steps.

In Figure 5.9 we show the result obtained using the same number of steps but with the adaptive

algorithm. We see that this gives a numerical solution that is indistinguishable from the benchmark

solution generated using Matlab’s ode15s.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
100

110

120

130

140

150

160

170

180

190

t (minutes)

Adaptive
ode15s
Observed

Figure 5.9: The G1 obtained by using the adaptive algorithm with N = 20443.

Another complication is that the magnitude of the five components are very different from each other.

For example, G1, which is measured in mg/dl ranges from 108.6 to 183.2, while the value of G2, also

measured in mg/dl, increases from 23 to over 4465. Figure 5.10 shows the solution for each component.

This fact suggests some refinements can be made to further improve the adaptive algorithm for this

particular problem.

67

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

0 5000
100

120

140

160

180

200

 G1

0 5000
0

1000

2000

3000

4000

5000

 G
2

0 5000
0

10

20

30

 I
1

0 5000
0

50

100

150

200

 I
2

0 5000
0

10

20

30

40

 I3

Figure 5.10: The graph of solutions of each component in (5.2).

We apply Euler’s method to (5.2); the errors are shown in Table 5.12 and visualized in Figure 5.11.

Note that, because of the some difficulties of (5.2) as discussed in previous section, one must take N

very large to obtain meaningful results. Indeed, for N < 70740, the method fails to compute a physically

meaningful solution.

No. of Steps No. of Rej G1 G2 I1 I2 I3

17223 0 1.73e+002 1.04e+003 NaN NaN 4.06e+001

20443 0 1.56e+002 1.02e+003 NaN NaN 5.63e+000

26913 0 2.16e+000 2.42e+000 NaN NaN 1.40e+000

36443 0 1.86e+000 1.78e+000 NaN NaN 1.14e+000

50358 0 3.57e+001 3.32e+000 NaN NaN 6.93e+000

70740 0 1.65e-001 9.19e-001 1.48e+000 7.49e-001 8.14e-003

99774 0 1.17e-001 6.52e-001 1.00e+000 4.89e-001 5.34e-003

Table 5.12: Errors in the numerical solution to (5.2) using Euler’s Method with uniform steps.

68

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

10
4.3

10
4.5

10
4.7

10
4.9

10
−4

10
−2

10
0

10
2

10
4

G
1

G
2

I
1

I
2

I
3

Figure 5.11: A log-log plot of the errors shown in Table 5.12.

5.4.2 Turning the user-chosen parameters

In Section 5.2.3 we showed how to carefully tune the parameters q, M1, and M2 for the van der Pol

example (5.1). We repeated the same procedure for the glucose-insulin model (5.2). However, for the

sake of brevity, we don’t present all the tables that we generated for that investigation, and just present

our findings. For this particular problem, we suggest their values are q = 0.9, M1 = 1.1 and M2 = 0.9. We

present results obtained using the adaptive algorithm with these parameters in Table 5.13 and Figure 5.12.

Comparing with Table 5.12 we see that they are much more accurate than when Euler’s method is applied

with uniform steps. Indeed, physically meaningful results are obtained with a relatively small number of

time steps (compared with the explicit Euler method); and we observe typical 1st-order convergence. As

we also see in Figure 5.12, the adaptive algorithm gives acceptable results even with a small number of

steps, say N = 17219.

No. of Steps No. of Rej G1 G2 I1 I2 I3

17219 110 5.02e-001 4.09e+000 1.18e+000 2.88e+000 3.09e-002

20440 123 4.50e-001 3.80e+000 1.12e+000 2.71e+000 2.97e-002

26910 96 4.00e-001 3.47e+000 1.04e+000 2.51e+000 2.76e-002

36439 67 3.51e-001 3.07e+000 9.32e-001 2.24e+000 2.47e-002

50355 53 2.97e-001 2.59e+000 7.93e-001 1.90e+000 2.10e-002

70736 38 2.10e-001 1.83e+000 5.62e-001 1.34e+000 1.49e-002

79686 37 1.86e-001 1.62e+000 4.98e-001 1.19e+000 1.32e-002

99771 34 1.48e-001 1.29e+000 3.98e-001 9.51e-001 1.06e-002

Table 5.13: Errors in the computed solution to (5.2) by the adaptive algorithm.

69

5.4. NUMERICAL RESULTS CHAPTER 5. ADAPTIVE TIME STEPPING

10
4.3

10
4.5

10
4.7

10
4.9

10
−2

10
−1

10
0

10
1

G
1

G
2

I
1

I
2

I
3

Figure 5.12: A log-log plot of the errors shown in Table 5.13.

5.4.3 A variation on the adaptive algorithm

As we see in Figure 5.10, the magnitudes of the components of the solution are quite different. Therefore,

instead of using the usual estimate for the truncation error:

Tn = y(tn)− yn ≈ h2

2
y′′,

we compute the relative truncation error:

∆Tn =
y(tn)− yn

yn
≈ h2y′′

2yn
.

With this change in algorithm, the errors in Table 5.14 are smaller than these in Table 5.13 even using

a similar number of steps. For example, we can compare N = 81659 in Table 5.14 with N = 79686 in

Table 5.13.

No. of Steps No. of Rej G1 G2 I1 I2 I3

18127 234 6.04e-001 4.25e+000 1.13e+000 2.76e+000 3.03e-002

23543 140 4.33e-001 2.99e+000 7.78e-001 1.89e+000 2.08e-002

31346 213 3.06e-001 2.11e+000 5.50e-001 1.34e+000 1.47e-002

42562 133 2.17e-001 1.49e+000 3.89e-001 9.45e-001 1.05e-002

58661 152 1.53e-001 1.06e+000 2.76e-001 6.71e-001 7.48e-003

81659 72 1.09e-001 7.47e-001 1.96e-001 4.76e-001 5.36e-003

Table 5.14: Errors in the computed solution to (5.2) by a variant of the adaptive algorithm.

70

5.5. CONCLUSION CHAPTER 5. ADAPTIVE TIME STEPPING

10
4.3

10
4.5

10
4.7

10
4.9

10
−3

10
−2

10
−1

10
0

10
1

G
1

G
2

I
1

I
2

I
3

Figure 5.13: A log-log plot of the errors shown in Table 5.14.

Note that, for the example we have considered we always have, approximately, minn yn ≥ 0.6. For a

different set of parameters, if minn yn ≈ 0, or if minn yn < 0, this might be unstable.

5.5 Conclusion

In this chapter we have presented an adaptive algorithm that allows the stepsize to vary in order to

capture the dynamics of systems in a highly efficient manner. The numerical result obtained by applying

this algorithm to the classic van der Pol oscillator shows the significant improvement compared with

Euler’s method using uniform steps. Furthermore, we have investigated how to calibrate the user-chosen

parameters in order to optimise the efficiency. We have also shown how to numerically solve the latest

glucose insulin model, and obtained a significant improvement in terms of the efficiency and accuracy.

In addition, this scheme has been successfully integrated into a DBN as shown in a recent research

article [4]. Using the van der Pol oscillator (5.1) as a test example, that paper shows that the Adaptive

Time Bayesian Networks gives more accurate results that the corresponding DBN, with 10 times fewer

time steps required to obtain reasonable results. The adaptive scheme has currently being incorporated

into the DBN for simulating the glucose insulin model. This is an on-going task, but initial results are

promising.

71

Chapter 6

Conclusions

As part of a larger project, our primary goal has been to develop a suitable numerical algorithm that can

be incorporated into a Dynamic Bayesian Network (DBN) that simulates glucose and insulin levels in

ICU patients. The DBN is a type of expert system that encodes “expert knowledge” and automatically

determines suitable values for parameters. In our case the expert knowledge is in the form of a system of

differential equations. However, these differential equations themselves presents some challenges, such as

discontinuities in data and stiffness. In this thesis we have studied such difficulties and suggested suitable

numerical schemes to handle these issues. Furthermore, although we have not discussed it in detail here,

many of our numerical results have provided important contributions to other members of the research

group in achieving their goals.

The thesis has successfully achieved the key target of our role in the project by proposing numerical

methods that are robust enough to generate accurate solutions to the quite difficult problems posed, but

simple and efficient enough to be incorporated into the DBN. Of our suggestions, the most successful has

been the adaptive time stepping algorithm of Chapter 5. This framework was suitable for differential

equations with rapidly varying solutions. Moreover, it has now been incorporated into a DBN leading to

the new:“Adaptive Time Bayesian Networks (ATBNs)” [4]. That study describes the new method, and

has investigated its potential by applying it to the model problem (5.1). As stated in [4]:

To evaluate the methodology, we built both a DBN and an ATBN based on a variant of the

Van der Pol oscillator. It was shown that the ATBN can be run with 10 times fewer time steps,

with corresponding run-time improvements, while also performing more accurate inference.

The adaptive algorithm is now a key part of the ATBN that uses the new model (5.2) to simulate insulin

and glucose levels in realistic situations. Testing and refinement of the methodology are on-going, but

initial results are very encouraging.

72

Bibliography

[1] R. N. Bergman, L. S. Phillips, and C. Cobelli. Physiologic evaluation of factors controlling glucose

tolerance in man; Measurement of insulin sensitivity and β-cell glucose sensitivity from the response

to intravenous glucose. Journal of Clinical Investigation, 68(6):1456–1467, 1981.

[2] Nicholas F. Britton. Essential Mathematical Biology. Springer Undergraduate Mathematics Series.

Springer-Verlag London Ltd., London, 2003.

[3] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons Ltd.,

Chichester, second edition, 2008.

[4] C. Enright, M. Madden, N. Madden, and A. T. Nhan. Adaptive time bayesian networks. Neural

Information Processing Systems, 2011. submitted.

[5] C. G. Enright, M. G. Madden, S. Russell, N. Aleks, G. Manley, J. Laffey, B. Harte, A. Mulvey,

and N. Madden. Modelling glycaemia in ICU patients: A dynamic bayesian network approach. In

BIOSIGNALS 2010 - Proceedings of the 3rd International Conference on Bio-inpsired Systems and

Signal Processing, Proceedings, pages 452–459, 2010.

[6] J. Douglas Faires and Richard Burden. Numerical Methods. Brooks/Cole Publishing Co., Pacific

Grove, CA, second edition, 1998.

[7] Laurene Fausett. Applied Numerical Analysis Using Matlab. Prentice Hall, 2008.

[8] Brunkhorst F.M., Engel C., and Bloos F. et al. Intensive insulin therapy and pentastarch resuscitation

in severe sepsis. New England Journal of Medicine, 358:125–39, 2008.

[9] B. Braun Space GlucoseControl. Integrated glucose control. Technical report, 2011. http://www.

space.bbraun.com/documents/BBraun_Space_GlucoseControl_Scientific_Folder.pdf.

[10] N. Haverbeke, T. Van Herpe, M. Diehl, G. Van Den Berghe, and B. De Moor. Nonlinear model

predictive control with moving horizon state and disturbance estimation – application to the nor-

malization of blood glucose in the critically ill. In IFAC Proceedings Volumes (IFAC-PapersOnline),

volume 17, 2008.

[11] Desmond J. Higham and Nicholas J. Higham. MATLAB guide. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA, second edition, 2005.

73

http://www.space.bbraun.com/documents/BBraun_Space_GlucoseControl_Scientific_Folder.pdf
http://www.space.bbraun.com/documents/BBraun_Space_GlucoseControl_Scientific_Folder.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts

in Applied Mathematics. Cambridge University Press, Cambridge, 1996.

[13] D. S. Jones, M. J. Plank, and B. D. Sleeman. Differential equations and mathematical biology.

Chapman & Hall/CRC Mathematical and Computational Biology Series. CRC Press, Boca Raton,

FL, second edition, 2010.

[14] Liam O’Callaghan. Models of glycemic regulation. Master’s thesis, National University of Ireland,

Galway, 2011. Supervisor: P.T. Piiroinen.

[15] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, second edition,

2002.

[16] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM J. Sci. Comput.,

18(1):1–22, 1997.

[17] Endre Süli and David F. Mayers. An Introduction to Numerical Analysis. Cambridge University

Press, Cambridge, 2003.

[18] Sauer T. Numerical Analysis. Pearson Addison Wesley, 2006.

[19] Hugo van den Berg. Mathematical Models of Biological Systems. Oxford University Press, 2011.

[20] T. Van Herpe, M. Espinoza, N. Haverbeke, B. De Moor, and G. Van Den Berghe. Glycemia prediction

in critically ill patients using an adaptive modeling approach. J Diabetes Sci Technol, 1:348–356,

2007.

74

