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Introduction

The uniqueness problem for meromorphic mappings was first studied by R.
Nevanlinna in 1926. He proved the following unicity theorem for meromor-
phic functions on C:

Theorem 0.1. Let ¢, v be nonconstant meromorphic functions on C. If there
exist five distinct values ay, . ..,as such that ¢~ (a1) = ¢ ~(ai), (1 < i <5),
then ¢ = 1.

During recent decades, there were many generalized results of Nevan-
linna’s theorem in the case where meromorphic maps of C" into a complex
projective space P"(C). In 1975, for instance, H. Fujimoto [4] showed that
if two meromorphic maps f and g of C™ into P™(C) have the same inverse
images (regarding multiplicities) for (3N +2) hyperplanes in general position,
then f = ¢. Since then, this topic has been studied strongly and continuously
with the results of H. Fujimoto, W. Stoll, L. Smiley, M. Ru, D. D. Thai, Z.
Ye and so on.

Results of many mathematicians on this subject regularly published for
last 30 years have showed the fascination of the uniqueness problem for mero-
morphic mappings. For this reason, we chose the thesis: The Unicity The-
orem For Meromorphic Maps Of A Complete Kéihler Manifold Into PV (C),
in order to initially learn about Value Distribution Theory and its important
application- Uniqueness problem.

Up to now, unicity problem has been solved almost based on the results
of Theory of Value Distribution- A theory remains many interesting open
questions in itself and it is being applied in different mathematical disciplines
such as Diophantine approximation, hyperbolic complex analysis, complex
dynamics, differential equations,...

It is said that investigating the uniqueness problems for meromorphic
maps needs both aspects: constructing Value Distribution Theory (especially
in establishing the Second Main Theorem) and studying its applications.
Consequently, this thesis has two chapters:

Chapter 1: Value Distribution Theory in several complex variables.
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Chapter 2: The unicity theorem for meromorphic maps of a complete Kahle
manifold into PV (C).

The purpose of Chapter one based on H. Fujimoto’s papers [6, 7, 8] is to
establish the Second Main Theorem, a key theorem in Nevanlinna Theory,
for meromorphic maps of C" into PY(C). The lemma of the logarithmic
derivative- the fundamental lemma in proving the Second Main Theorem is
explicitly solved in this Chapter. Chapter one is also considered the prelim-
inaries for the proofs in Chapter two.

The main content of dissertation is in Chapter two. We tried to explicitly
present and concretely prove H. Fujimoto’s results in [9], study meromorphic
maps of an n-dimensional complete Kihler manifold M into PV (C) and give
a new type of the unicity theorem in the case where the universal covering
of M is biholomorphic to the ball in C* and meromorphic maps satisfy a
(C,) condition. That means letting M is an n-dimensional connected Kéahler
manifold with Kdhler form ! and f is a meromorphic map of M into PN (C).
For p > 0 we say that f satisfies the condition C,) if there exists a non-zero
bounded continuous real-valued function h on M such that

pQs + ddlog h* > Ricw

where ; denotes the pull-back of the Fubini-Study metric form on P¥(C)
and d° = %(5 —0).

One big drawback to people who have just started to read Nevanlinna’s
Theory of Value Distribution is that this theory concerns many profound
results in complex analysis, meromorphic maps, analytic sets, complex ge-
ometry, etc. The author could not get over these obstacles unless there were
wholehearted instructions of his supervisor. On this occasion, the author
would like to express a deep gratitude to Prof. Do Duc Thai for his enthu-
siastic supervising and useful lectures he gave. The author would also like
to thank professors and lecturers at Faculty of Mathematics, Hanoi National
University of Education, Geometry Division, Seminars on complex geometry,
Seminars on Value Distribution Theory. The 2 author also thank referees who
spent their precious time for reading and giving helpful advices for his thesis.
At last, but most important the author is deeply grateful to his family. This
is a huge motivation both in morale and financial supports in helping author
to finish Master’s course in Hanoi.



Chapter 1

Value Distribution Theory in
several complex variables

1.1 Preliminaries

Let M be a n-dimensional complex manifold and let f : M — PY(C) be
a meromorphic map. Let p € M and we denote the germ of all meromor-
phic functions at p by M,. Let U be a neighborhood of local holomorphic
coordinates at p such that U is a Cousin domain II. Then f has a reduced
representation on U, i.e f = (f1 : ... fyy1 such that each f; is a holomorphic
function on U, with f := (f1,..., fv+1) Z0and f(2) = (fi(2) ... ¢ fva1(2).
In addition, the set {z € U : fi(z) = 0,1 < ¢ < N + 1} has co-dimension
which is higher than 1. With o = («v,...,ay), a; is a non-positive integer,
we denote

N olel olal
b= (32‘13‘1 . .8zgnf1’ o ..(9270;7th+1

where Df = (f1,..., fv41). For each k > 0, we denote FF a M,-submodule
of MY+ generated by {D°f : |a| < k} and let F, ' = {0}.

N+1
) e M, ™,

Proposition 1.1. The set .7-";“ does not depend on the chooses of local holo-
morphic coordinate systems and reduced representation f = (f1:...: fyi1)-

Proof. We prove by induction on k. It is easy to see that the proposition holds
for k = 0 as we have a biholomorphic between two local coordinate systems.
Suppose that the proposition holds for all || < k. Let u = (uq,...,u,) be
other local coordinates. We use the following notation

o olal

C o] Juft ... ougn’
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with a = (aq,...,a,). We take an arbitrary «, with |a| = k£ + 1. We write
D® = D;D® , where 1 < i <n and |a'| = k. By the induction assumption,
we can write

"DYf =" hyD,

18Ik
where hg € M,,. So we have

uDaf — uDi(uDa’f)

="D; | > hsD"f
|BI=k
“\ 0z
— umn). B I D.DB k41
= ( DihsD f+Zhﬂau1D2D f) € F,
|61k i=1

This implies that ]—"Ifﬂ does not depend on choosing local holomorphic
coordinates. ) )
Now we consider another reduced representation of f = (fi: oo fve)

and let f := (fy,..., fn41). Then h = %(z =1,2...,N + 1) are nowhere

vanishing holomorphic functions. Let D* = DZ-DO‘,, with |o'| = k. By the
induction assumption we can write

D¥f =" gsD’f,
1B1=k

where gz € M,, with g3 € M,,. Therefore, we obtain

1B1=k |81<k 18I1<k

This means .7-"5“ does not depend on choosing reduced representation of
f m
Definition 1.1. We define a kth rank of f as follows

ri(k) = mnkMp]:I’f — mnkMp}"]f*l.

Definition 1.2. A total rank of f and a total rank of Jacobi matrix of f are

defined as
ry= er(k:) -1,

k>0
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and

lp=> kry(k)

k>0

respectively.

Proposition 1.2. 1. A meromorphic map f : M — PN(C) is non de-
generate, i.e. f(M) does not contain in any hyperplane of PN(C), iff
ry = N.

N(N +1
2.1 < % for all meromorphic maps to PN (C).

Proof. First of all, we prove (1). Assume that f is degenerate, i.e. fi,..., fnvi1
are linear dependent on C:

atfi +.. . +a"  fy =0
where (al,...,aV!) #(0,...,0). So, we have:
a'Dfi 4+ ... +ad" DN =0, Va
— rank, 7, = rank, (Df : |o| S k) < N +1,
for all K =1,2,.... Therefore, we get ry < N.

Conversely, suppose that ry < N = mgxrankMpf;f < N + 1. Then,
k>0

there exist (¢1,...,9n+1) # (0,...,0) in M;V“ such that:

o1 Dfi+ ...+ on Dy =0,

for all a. Taking ¢ € M close enough to p such that ¢q,..., N1 are
holomorphic in a neighborhood of ¢ and (¢1(q),...,en+1(q)) # (0,...,0).
Let

V(z) = pi(@) fi(2) + .+ onga(q) fra(2)

on U. Then, we have

(DY) (q) = p1(q) D filq) + ... + ony1(@) D" fnia(q) =0

for all a. By the identity theorem , we have 1 = 0. This means that f is
degenerate. [

Remark 1.1. By this proof we can see that f is non degenerate iff mnkMpf;fO =
N + 1 with for some positive integer k.

To prove (2), first we need to prove the following lemma
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Lemma 1.1. Let .7:;”1 = .7-;’,“ for some positive integer k. Then, we have

Proof. Suppose that we have ]-7,‘7*1 = Flﬂ“, we will prove ]—"ﬁ/ C f; for all
k' > k by induction on k’. It is easy to see the case where k' = k + 1.
Suppose that F¥ C F¥ with k' > k. Taking a with || = &'+ 1 and we write
D® = D;D* for some i and o/ with |o/| = k. By the induction assumption
we can write

Dalf = Z QOalgDﬁf,
|81k

where ¢ 5 € M,. We have,
D*f =D;D"f =" DipwsD’f + > owsDiD*f € F} C FF.
18Ik 1BI1<k
This proves our statement. ]
Now we give the proof of (2).

Proof. We have
rank, Fy SN +1,Vk=1,2,.. ..

So, there is the smallest positive integer k; such that
1= rankMp}"I? <. < rankMpF;fl_l < rankMpf;fl <N+1

k1 k1+1
and rank, F;* = rank v, F;0 . Therefore,

k1
ly = Z kre(k) = Z k(rankMPF]fl — rankMpfflfl)
k>0 k=1

= klrankMpf;fl — (rankMp]-—;,] +...+ rank/\/lpf;]fl_l)
SE(N+1) = (1+...+ k)
N(N+1)=(N=k) = (N=k) _ N(N+1)

2 - 2

]

Now we consider a meromorphic map f from B(Ry) := {z € C": ||z]| <
Ro}, (0 < Ry £ +o0) into PY(C), where |z]| = (31, 2:]|2)2 with z =
(21,...,2,) € C". We use the following convention: B(oo) = C". Taking a
reduced representation f = (f;:...: fy4+1) in B(Rp), we denote

1= (AP +. .+ a2
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By the definition, a pullback of Fubini metric form of f is given by
Qp = dd°log || f||*.

We denote v; = (dd®||z||?)!, o, = d°log ||2]|* A (dd¢log ||2]|?)"! and S(r) =
{z€C":|z|| =r}.

Definition 1.3. A characteristic function f is defined as follows

Ty(ry 7o) = / log | flow — / log | |-
S(r) S(ro)

Let ¢ be a non zero meromorphic function on B(Ry). we can consider
¢ as a meromorphic function into P'(C). For each a € P'(C), we denote
the number of multiplicities of zero of ¢ —a at a point z € B(Ry) by vg(2).
Taking

rgn% f VgUn—1 ifn>1
z€B(r) V(i) : n

and determine a counting function of a by

ey [0
qﬁ(rarO)— ; t (0<T0<T<R0).

L]

So we obtain Jensen’s formula:
/ log [l — / log [Blo = NO(r, 7o) — N&(r,ro).  (L1)
S(r) S(ro)
Let f: B(Ry) — PY(C) be a non-degenerate meromorphic function with

a reduced representation f = (f;:...: fyy1) and let f = (f1, ..., fvs1)-

Definition 1.4. Let o' = (o}, ..., ) (1 £ i < N+1) be N+1 multi-indices
. A generalized Wronskian of f (or of f) is defined as

Wi ane1(f) = W _ovii(f) :=det(D*f: 1 < i < N +1).

Definition 1.5. We say that {a,...,aV ™'} (o = (af,...,al)) is accept-

n

able of f (orf) if for each k =0 {D*f, ..., D“l(k)f} is a base of M,-module
FF. where p € M and l(k) = ranky, Fy .

Proposition 1.3. Let f be non degenerate and let {a*, ..., o™} be accept-
able of f. Then, we have

WalmaNJrl (gf) = gN+1Wa1maN+1 (f)

for abitrary non-zero holomophic map g, where gf = (gf1,...,9fn+1)-
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Proof. We prove by induction on |a|, for each a we can write
D®(gf) = gDf + Z ans D gD"f, (1.2)
|61<le
for some constants anz. We replace each D (gf) in
Wi ani1(gf) = det(D* (gf) : 1 < i S N +1)

by the right hand side of equation (1.2) with a = o' and repeat with an
addition of a multiple of another line we obtain

det(D* (gf)) = det(gD'f).

This proves our statement. 0

1.2 The lemma on logarithmic derivative

In this section, we prove the Lemma on logarithmic derivative [§].

Let ¢(z1, ..., 2,) be a non-zero meromorphic function which on B(Rg)(0 <
Ry £ 400). Let a = (ay, . . ., ) be a multi-index and let z = (z1,...,2,) €
C". We denote z* := 21" ... 2% and D% = D' ...D% ¢, where D;p =

0

azi
Theorem 1.1 (The lemma on logarithmic derivative). Let a = (aq, ..., ap) #
(0,...,0),0 < 19 < Ry. Taking positive integers p,p’ such that 0 < pla| <
p' < 1. Then, for ro <r < R < Ry, we have

/Sm . (D;@(Z)) o(2) < (Rzn_lT¢<R, m))p"

R—r
where K is a constant which does not depend on r and R..

. Then, we obtain the following theorem.

Corollary 1.1. Let o = (aq,...,ap) # (0,...,0) and 0 < ro < Ro. Then,
forro <r < R < Ry, we have

2n—1

log™ (D%0/9)(2)|ow(2) < K log™ T, (R, ) )
S(r) R—r

To prove Corollary 1.1 using Theorem 1.1, we use the following result by
Biancofiore and Stoll:
Let h 2 0 be an integrable function on S(r). Then, we have



Value Distribution Theory in several complex variables 11

/ log™ ho,, < log+/ ho,, + log 2. (1.3)
S(r) S(r)

To apply Theorem 1.1, we take p,p’ such that 0 < pla] < p’ < 1. By
(1.2) and Theorem 1.1, we have

1
/ log™ |[D%p/ploy, <~ / log™ |2*(D% /) (2)[Pon(2) + K
S(r) P Jse)

1

< Liggt / (D)) (2)Pon(z) + K
p S(r)

2n—1

< Klog" (Z T,(R, r0)> .

Therefore, we obtain Corollary 1.1.
For the following part , we use K to denote a constant which does not
depend on r with oy < r < Ry even if this constant is replaced by a new one.
Next, we will prove Theorem 1.1. First of all, we prove the following
lemma

Lemma 1.2. Let 1, pa be non-zero mermorphic functions on B(Ry). Then,
we have

T<P1§02 (T’ TO) é T<P1 (7”, TU) + Ttﬂz (Tu TU) + K.

Proof. We take reduced representative points ¢; = (g; : h;) (i = 1,2), and
0192 = (g3 : h3). Then, k := g192/93 = h1ha/hs are holomorphic. Since,

(lgPlg2]? + [Pa?[h2]?) £ (Jg1]* + [g2/*) (|ha* + [hal)
= (|k[Plgsl” + [k |hsl*) < (lg1l* + [g2l*) ([7a]? + |ha?)
= [E|(|gs* + [hs) < (lgu* + lg2l*) 2 (1ha|* + [haf*)V/?
= log(|gs|* + |hs|*)"/* + log |k| < log(|g1]* + |[h1|*)"* +log(|ga|* + |hal*)/?,

we have
/ log o102l < / log [lo1 o + / log [lg2llo — Ni(r, o) + K.
S(r) S(r) S(r)

Therefore, we get
| 1oglgallons | toglieilon+ [ togliealon + K
S(r) S(r) S(r)

that means
T<P1<P2 <T7 TO) é T<P1 (Ta 7‘0> + T<P2 (Tv TO) + K.

This prove our lemma [
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Lemma 1.3. Let ¢ be a non-zero meromorphic function on B(Ry) with a
reduced representative ¢ = g/h(= (g : h)). Then, we have

/ |log |p||oy £ 2T ,(r, ro) + K.
S(r)

Proof. Since

g
1og%z} _ |1og |g| — log ]

= 2max(log|g|, log |h|) — log |g| — log |h|

|log ||| =

< 2log||¢|| — log|g| — log |hl],
we have

| noglellon=2 [ toglielon— [ 1oglgle, [ loglo,
S(r) S(r) S(r) S(r)

< 2T,(r,r9) — Ny(r,70) — Ni(r,10) + K
< 2T,(r,mo) + K.

[
Lemma 1.4. Ni(r,79) = T,(r,70) + K for all a € P*(C).
Proof. Let a = (a1 : ay) € P'(C), we have
Ng(r,mo) = / log |asg — aih|o, — / log |asg — aih|o,
5(r) S(ro)
< [ 1oglioll, + K
S(r)
S Tp(r,mo) + K.
[

Lemma 1.5.

%Wm%(éumﬂﬂ%+MﬂmwN§K,

where log™ = max(log x,0) with x = 0.
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Proof. We have

= log(|g|* + |1[*)"/?
< log(2max(|gl, |n|))

= log™ ‘%‘ + log |h| + log 2

log [

= log [|¢||on < / log* |o|o, —i—/ log |h|o, + K,
S(r) S(r) S(r)

therefore
T (r.r) — ( [ o el + NG ro>) < K.
S(r)

On the other hand, we have

log* || + log |h] + log 2 = log(2max(]g], |A]))
— log(max(|g]. |n])) + log 2
< log(|gl* + [W[*)"* + K
— log ]| + K.

thus

(/ log™ |p|o, + N2(r, ro)) —Ty(r,m0) S K.
S(r)

This proves Lemma [1.5 O]

Lemma 1.6. Let 0 <19 <r < R < Ry and let p :== (r + R)/2. Then, we

have
2R

R—r

M (p) € e (T,(Ror0) + ).

Proof. By definition, we have

. R dt r dt R—p
N = [ np©F 2 [ ne®F Zna0)7
7"0 p
So we obtain
< i N4 R < 20 T, (R K by L 1.4
”ug(ﬂ):R—_p o ﬂ“o):m( »(R,70) + K) ( by Lemma 1.4).
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Lemma 1.7. Letr > 0 and 0 < p < 1. For all a € C, we have

—/ A L
21 Jo  |re?? —alp 2(1—p)

Proof. Without loss of generation, we can assume that a is a real positive

[IA

number. If [f] < g, we have

lre? —a| > r|sing| >

2N

and if /2 < 0] £ 7, we get |re?’ — a| = r. Therefore, we obtain

27 D /2 w
/ .r—d0§2/ (i>pd9+2/ 9
o |rei? —alp 0 20 /2

1— _
§2 p7rp<E>1 10_‘_7T
— 1—p \2

m(2 —p)
1—p

This implies

A

1 2m D .
—/ s 2P
21 Jo  |re?? —alp 2(1—p)
[

Proposition 1.4 ([11]). Let ¢ be a non-zero meromorphic function on {u €
C:|ul < Ry} and let 0 <r < R < Ry. We take z € C such that |z| = r and
©(z) # 0,00. Then, we have

(Z—U)

—uz

do+ Z v(u)log

lulSR

Y

L[ ; Re¢—|—z
g o(2) = 5 [ tosletre) e (15 )

where z = (z1,...,2,) € C", n = (21,...,2n-1), ¢ = 2zn, 2 = (1,() and
[l = ([ + .+ zaa]?)V2

Lemma 1.8. Let h be an integrable function on S(r) (r > 0). Then, we have

1
h n— o5 _o n— h ) ’
/S(r) T e /E(T)U 0 /<|=\/m i ele)

where B(r) == {n e C* ' |n| <r}.
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For a non-zero meromorphic function ¢ on n B(Ry), there exists a zero-
measure subset E of B(Ry) such that for each n € B(Ry) \ E, a meromorphic

function (¢[n)(¢) = ¢(n, ¢) is well defined on {¢ € C : |(| < v/ R% — |n|*}.

Lemma 1.9. For all a € PY(C) and 0 < r < Ry, we have

1
o [ (VS )0 (1) S g (1)
r B(r)\E

Lemma 1.10. Let 0 < 5 < 1 and let 0 < r < p < Ry. For alln € B(r)\ E,
we have

P P b
7(0) < (p_r Jp—EE <>||o-1<<>>

+ K (nyo (v p? = %) + nuge (V2 = [n]?))-

C(g—f/so) (n,¢)

/|<:\/W

Proof. We can assume that ¢(() # 0,00 on {¢ : |¢| = /p? — |n|?}, as each

element is continuous with respect to p. By taking derivatives in Proposition
1.4 with application on functions ¢|n and R = p := \/p? — |n|?, we obtain

Oy P [T logle(n, pew Iew u
<a_c S‘))("’Q_%/o e g 10 2 Vel {—c_/?—uc}‘

[ul<p

Therefore, we have

(/%)

" (- |log (1, )| )’3
< 177V s5/10
:(mq o

lul<p

Taking integral and using Lemma 1.7, we can see that
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/CI—\/T2 |2 ]
logle(n. Ol .\
Jpm—CC /M:ﬁ T <>>

v (u 9% 9% .
|u§ﬁ( wln( u) + <p\n< ))/K:\/m(]u_q,a“' ‘(laz/u)_dﬁ> 1(€)

< <27“P/||<~“0g‘80<77>o”01(u) Amﬁal@)

1K (Z (2 ) + u;;°n<u>>) .

|u|=p

On the other hand, we have

d°log |¢|?

1 1
/IC\/TQ—InP ju — C|201(<> B /IC\/TW lu — ¢|?
1 2T 1

%) e (dodlog|¢| = —dSO)

TR (2P

- 1

(2= n)?) = (2= n)?)
1

p2_7a2

for all u such that |u| = p. Thus, we get

C(?—f/s@) (7€) ﬁ
2rp

= <p2_7,2 /lul plloglso(n, )Hal(u)> + K (o, (6) + s (),

/d:\/m 01(0

and since 0 < r < p < Ry we have . Substituting on the
p r
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above inequality, we obtain
g p
CHE [log o (n, )| (€)
P =T Jil=/p?—Inl?

dp
+ K(no (v p* = [n?) + e (V p? = [0]?)).

This prove Lemma 1.10. O]

/|<—\/W

Now we prove Theorem for the case where |a| = 1. We prove by
induction on |a|. First of all, we consider the case where |a| = 1. Without
loss of generation we can assume that D* = D,,. Let rp <r < R < Rp,0 <
p<p <landletp=p/p, p=(r+ R)/2. Since the degree of each pole
of D,p/¢ is less or equal 1, |z,(D,p/p)(2)|? is integrable on S(r). Using

Lemmas 1.9, and Holder inequality we have

[y

5 g 1 _
Zn Dn < pO_n Z) = 50— Un—1 Dn ) pal
IR Ry (RUSIUY - /0P 0

Dé:m r2i2 (P f T)ﬁ (/l;ﬂfr Unl(n)) ’

Up_1 lo , o1
</| [ oslet Ol <<>)
R e (VTP 4 nus (V= TP un s (1)

+
P22 fipgge e

1.9 P In=2
p P
< (—T/S()Hogko“an) K (2)7 (g, () + i, ().
)

p— r eln

Moreover, using Lemmas 1.3, 1.6, we obtain

|20 (Dnip/0)(2)[Pon(2) = [2n(Dnsp/0)(2)|P 0 (2) '
S(r) S(r)

P ' P 2n—2 ,
S (G5 [ nemlelle )+ K (8) o) s
— T JSs(p)

r

P
2R p 4R2n71 p
< (2 1 ) o+ K T.(R,ro) + K
= (7 [, Dowlellon) 1 (G g+ 8)

/

3 R2n-1 p
<K (—T@(r, ro)) .
r

/

/

)
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Thus the case where D® = D,, of Theorem 1.1 is proved.
To complete the proof of Theorem 1.1, we need the following lemma

Lemma 1.11. Let ¢ be a non-zero meromorphic function on B(Ry) and let
0<rg<r<R<Ry. Then, we have

2n—1

— To(R, To)) )

R
Tpip(ryro) < 3T,(r,mo) + K log™ (R

with 1 =1,2,...,n.

Proof. Since ¢ is meromorphic on B(Ry), using Lemma |1.2| with two mero-
morphic functions D;¢/¢ and ¢ we obtain:

Tpip(1,70) = Ty, 1m0) + Typ(r,10) + K

Next, using Lemma [T1.5] we have:
Tousolr) < [ 108" IDigelon + N5 (7o) + K
Therefore,
Tp,p(r,m0) < /S( )log+ |Dip/plon + N, (1, 70) + Typ(r,m0) + K. (1)

On the other hand, since vy o/ < vy + Vg and using Lemma , we get

NBosp(r;m0) = NZ(r,70) + N (r, 70)
i
S 2T,(r,mo) + K (2).

As we already proved Theorem 1.1 for the case where || = 1, we can use
Corollary 1.1 in this case. Thus, we have

2n—1
/ log® |Di¢/¢lon < K log™ il T,(R,r0) ). (3)
S(T) R —Tr

From (1), (2) and (3), we get:

2n—1

— T, (R r0)> .

Lemma is proved [1.11] O

R
Tpip(r,ro) < 3T,(r,m0) + K log™ (R



Value Distribution Theory in several complex variables 19

Now we prove Theorem 1.1 in a general case. Suppose that Theorem 1.1
holds for all « such that |o| = k. We take « satisfying |a| = k + 1 and
write D* = D D;, where 1 < i < n and |o/| = k. Then, we have D%/ =
(Digp/2)(D™ (Dig)/Dig), 2 = 22 and Jalp = (jo/] + 1)p < p/ < L. Let
p1:=1/(]¢/| +1) and pe := |&/|/(|¢/| + 1). By using Holder’s inequality and
the induction assumption, we get

/:a@)’za@“w/so)(z)wan(z)
- (/Sm =D/ S0><Z>|”“’1an<z>)pl (/-a(r) rza’wa/wigo)/pigo)(z)\P/pzanu))m

R2n-1 P'p1 R2n-1 p'p2
é K <R _ TTW(R7 TO)) (R _ T,TDMO(R7 TO)) .

log x

On the other hand, as lim,_,, = 0 for arbitrary € > 0, there exists

a constant K, such that

N R2n71 Ranl €
log (R — TTLP(R? ro)) < K, <R rT@(R’ 7’0)> )

Using Lemma [1.11], we have:

R2n—1 P'p2 R2n-1 R2n-1 e\ \ P'P2
(s owtr)) = (5 (3t + K (5 1mr0)) )

R—r r
Ranl €1
<K (R — rTW(R’ ro)) .
. . ||’
We choose € which is small enough to satisfy ¢; < m We get (e +
Q@

p'p1) £ p'. Therefore, we obtain

[ [ 0rere o) £ K (i >) .

This proves Theorem 1.1.

1.3 The second main theorem

Now we consider g (2 N + 2) hyperplanes

Hj:ajwy+ ... +ay Moy =0 (125 < q)
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in PY(C) in a general position and let
Fy=alfi+...+a " fxp 125 0).
Let {a,...,a¥ "1} be acceptable of f. We define

Wi anv+1(f)

= RR.F,

which is a meromorphic function on B(Ry). We have

Proposition 1.5. Let 0 < 1o < Ry and let 0 < I;t < p’ < 1. Then, there
exists a constant K > 0 such that ro <r < R < Ry

/

ol taN+L ¢ Ho-N-1)y < | RQn—lT . P
[ 1 A e, < K (T gy (mr))
where z® = 2" .. 20" with 2 = (21,...,2,) and @ = (aq, ..., qp).

To prove Lemma 1.5, we represent here the following lemmas.
Lemma 1.12. Let (a},...,a) ') € CN*! (i = 1,2), suppose that F; =

alfi + ...+ aN e Z0 et o = Fl Assume that ¢ is a meromorphic
2

function into Py(C), we have

Ty(r,ro) < Ty(r,mo) + K.

Proof. With a reduced representation ¢ = (g : h) on B(Ry), k== — = —

is a non-zero meromorphic function. We have,
Iell?[k* = (191> + [R)[EP* = |1 * + | Fof* < K| £

Therefore, we get

| voslieliont [ st < [ oo
S(r) S(r) S(r)

where we have used the following

/ log|k\an:Nk(r,7’0)+/ 1og|kyang/ log ||
S(r) S(ro) S(ro)

We prove our statement. O
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Lemma 1.13. There exists a constant K such that

Wa1~~~aN+l (F:I7'17 ttt) F}N+1)

IN+1

War aN+1
] \\|quN1<K 3

1SH1<..<jn+15¢

Proof. We take an arbitrary point z € B(Ry). Let i1, ..., i, be a permutation
of 1,2,...,q such that

[Fa(2) = S Fy L () S L () =0 2 1F(2)]

Since H, ..., H, are at general position, fi,..., fx41 are expressed linearly
through Fj , ..., Fj,,,. Therefore, we can find Cj, ;. , independently with 2

such that

|fl( )’ = 21 AN max |Ek<z)‘ §0i1~--iN+1’Fiz(Z)|

1<kSN+1

wherei =1,.... N+1landl=N+2,...,q. So we have

N+1 1/2
1f ()l = (Z |f¢(z)!2> S (N +1)V2C iy |Fu(2)]

i=1
where | = N +2,...,q. Thus, we get
IF @ S Kl Fiylu(2) - Fy (2)],
where K; = ((N + 1)/3)C{~ JXN ' . On the other hand, we see that

Wal...aN'H (f) = ail...iN+1 Wal...aN‘H (Ela ) EN+1)

with constant a;, ., = det(aglc 1< j,ESN+1)7L Let

K = max Ci, Qi i
|<i1 <o cini1<a 11---2N+1| i1 N1 |7
we have
Wal aN+1 Hf |q N—-1 < C. . ‘CL‘ ] ’ Wal...aN+1(E17"'7EN+1)
21...ZN+1 Zl...ZN+1 F1F2 o Fq

<K ’ Wal...aN+1(Fi17 cee >Fl’N+1) (Z)’
- Fi1 c. EN+1
<K Z Wal...aN+1 (Eu ceey EN+1
- El e FiN+1

1Si1<..<in4+15¢

This prove our statement. [
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Now we prove Lemma 1.5

Proof. We denote [(k) = rank ij’-"lﬂ“. Then, by Remark 1.1 there is an integer
number kg such that l(kg) = N + 1,

Iy = Zkrf(k:)

k>0

=Y krp(k)

— (ko) — (ko — 1)) + (I(ko) — (ko — 2) + ..+ (I(ko) — 1(0))
= Vko—1 +...+% with Vi = (l(k’o) — l(k’o — k']))

Without loss of generation, we take v; = (7;,0,...,0),Vj =0,1,... ky—
1. By Lemma 1.13, we have

Wal...aN“(Fju s 7FjN+1)

J JIN+1

Woat vt ()| ppiamnvt <
cee _K
el e >

1S51<...<jn+15¢

where K is constant. On the other hand, let o = o' + ...+ o™V *! then

t
:: / Lo W on+1 (an R F}N+1) o, < / ‘Za_lf ‘t pr Wal...aN“(an R
S(r) FJ s F}N+1 S(r) FJ ce F}N+1
< K/ py Wal.--aN+1(Fj17"'7F}N+1
S(r) FJ "'FjN+1
So we only consider the following term:
t
/ S0k -1 Wat..avi1 (Fjl’ T FjNJrl) T,
S(r) FJ T FjNH

with 1 < j; < ... < jns41 S ¢. The expression under the integral sign can be
approximated by multiples of positive constant of sums of functions which
have the following form

t
Y0 . DVo—-1p;
0Tk -1 Dig Ping—1

Pio Spiko —1

¢i0...ik0_1 = )

Wheregpizf(1§z§q) and 1 =< ig, ..., 061 = q.
1
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Denote p; = ?—J with 0 £ j < kg — 1. By the Holder’s inequality, we have:
f

ko—1 . t pj
D7 i j
/ ¢i0---ik0_10—n é H (/ Z”/ji Pj O'n) .
S(r) =0 S(r) Pi;

We see that (pij)|'yj| =Yo+. -+ -1t =1t <p <1where0 =< j < ko—1,
using the Lemma on logarithmic derivative we obtain

On the other hand, using Lemma 1.12, we get
T,.(r,r0) < Ty(r,r) + K,

foralli =1,2,...,q. Thus, we have

R2n—1 4
I<K (R Tf(R,ro)) .

-7
[

For real-valued functions f(r) and ¢(r) on [rg, Ry) we denote || f(r) < g(r),
ie. f(r) < g(r) on [ro, Ry) except for a set E such that [, dr < oo if Ry = oo
and [ (Ro—r)'dr < oo if Ry < co. By Lemma 1.5 we have the Second main
theorem which is stated as follows.

Theorem 1.2 (The second main theorem). Let f : B(Ry) — PN (C) be a
non-degenerate meromorphic function and let Hy, ..., H, be hyperplanes at
general position. Then, we have

(q—N—=1)T(r,rg) = N;’o(r, o) + Sg(r),

where there exists a constant K satisfying

1
S <l
| f(r)_fogR

— + Klog"™ Ty(r,m0) if Ry < 00,

1S¢(r) £ K(log™ Ty(r,ro) + logr) if Ry = oc.
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Proof. By Lemma 1.5 and the convexity of a logarith function, we have

t/ log |2 an—l—t/ log
S(r) S(r)

+M—N—n/1%wml

S(r)
log /
5(r)

<log K + p'log (Z

Wal...aN+1 (f)
F,...F,

O£1+...+C|{N+1

On

ot vovs Watarn (f) [
Fy .. F

q
2n—1

—Ty(R, ro))

A

z

[fla==D

=log K +p' (RQ”_Q log RR + log T (R, r0)>
—7

<K (log" R +log™ Ty (R, 7o)

= R—r A '

Using Jensen’s formula, we get

Wal...aN‘H (f) o
Fi...F "

q

—N(go(r,ro)§/ log
S(r)

/ ‘Wa1 aN+1
= — log
S(r)

On the other hand, we have

On é Ngo(fra 700)'

ﬂmmzj'mmm%—/ log ||
S(r) S(ro)

Therefore,

R
(¢ = N = DTy(r,ro) = N (riro) + K(log™ = +log" T¢(R,70))-

Let
R
Sf(?“) = K<10g+ m + 10g+ Tf(R, T())). (*)

Since T(r, 7o) is a continuous ,increasing function and we can assume that
T¢(r,ro) = 1. Using Lemma 2.4 in Hayman, we obtain:

RO —T
T _ <2T
f (T + GTf (7”, TO) ) TO) = f(?", TO)
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except for a set E such that [ ﬁdr < oo and
E

1
T —_— < 2T
/() <210

except for the set E’ such that [ p dr < oo in the case where Ry = oo.

1
Tf(T, TO)

Substituting in (*) R=1r + , if Ry = 0o we have:
1
|Ss(r) = K <logr + log(rTs(r,ro) + 1) + log™ T(r + —r),ro))
» 10
< K (logr + log™ Ty(r, o)) .

Ro—?"

If th = _
Ry < o0, thay R =1+ T} (7o)

, we obtain:

reT(r,ro) + Ry —r Ry —r
Si(r) = K logt —L2 log* T 0
I8(0) = i (g “EAERE RO gt 7y (4 =

+log™ Ty(r, ro))

1
<K (logJr reT(r,ro) + log 2 + log
RQ —T

1
< llog 7 + Klog™ Ty(r,m9).

o—T
O]

Notation 1.1. In Theorem 1.2, if Ry = oo and lim,_ % < 00, or

equivalently f is rational, then we can choose S¢(r) such that it is bounded.
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