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Introduction

The uniqueness problem for meromorphic mappings was first studied by R.
Nevanlinna in 1926. He proved the following unicity theorem for meromor-
phic functions on C:

Theorem 0.1. Let φ, ψ be nonconstant meromorphic functions on C. If there
exist five distinct values a1, . . . , a5 such that φ−1(ai) = ψ−1(ai), (1 ≤ i ≤ 5),
then φ ≡ ψ.

During recent decades, there were many generalized results of Nevan-
linna’s theorem in the case where meromorphic maps of Cn into a complex
projective space P n(C). In 1975, for instance, H. Fujimoto [4] showed that
if two meromorphic maps f and g of Cn into P n(C) have the same inverse
images (regarding multiplicities) for (3N+2) hyperplanes in general position,
then f ≡ g. Since then, this topic has been studied strongly and continuously
with the results of H. Fujimoto, W. Stoll, L. Smiley, M. Ru, D. D. Thai, Z.
Ye and so on.

Results of many mathematicians on this subject regularly published for
last 30 years have showed the fascination of the uniqueness problem for mero-
morphic mappings. For this reason, we chose the thesis: The Unicity The-
orem For Meromorphic Maps Of A Complete Kähler Manifold Into PN(C),
in order to initially learn about Value Distribution Theory and its important
application- Uniqueness problem.

Up to now, unicity problem has been solved almost based on the results
of Theory of Value Distribution- A theory remains many interesting open
questions in itself and it is being applied in different mathematical disciplines
such as Diophantine approximation, hyperbolic complex analysis, complex
dynamics, differential equations,...

It is said that investigating the uniqueness problems for meromorphic
maps needs both aspects: constructing Value Distribution Theory (especially
in establishing the Second Main Theorem) and studying its applications.
Consequently, this thesis has two chapters:
Chapter 1: Value Distribution Theory in several complex variables.
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Chapter 2: The unicity theorem for meromorphic maps of a complete Kähle
manifold into PN(C).

The purpose of Chapter one based on H. Fujimoto’s papers [6, 7, 8] is to
establish the Second Main Theorem, a key theorem in Nevanlinna Theory,
for meromorphic maps of Cn into PN(C). The lemma of the logarithmic
derivative- the fundamental lemma in proving the Second Main Theorem is
explicitly solved in this Chapter. Chapter one is also considered the prelim-
inaries for the proofs in Chapter two.

The main content of dissertation is in Chapter two. We tried to explicitly
present and concretely prove H. Fujimoto’s results in [9], study meromorphic
maps of an n-dimensional complete Kähler manifold M into PN(C) and give
a new type of the unicity theorem in the case where the universal covering
of M is biholomorphic to the ball in Cn and meromorphic maps satisfy a
(Cρ) condition. That means letting M is an n-dimensional connected Kähler
manifold with Kähler form ! and f is a meromorphic map of M into PN(C).
For ρ ≥ 0 we say that f satisfies the condition Cρ) if there exists a non-zero
bounded continuous real-valued function h on M such that

ρΩf + ddc log h2 ≥ Ricω

where Ωf denotes the pull-back of the Fubini-Study metric form on PN(C)

and dc =
√
−1
4π

(∂̄ − ∂).
One big drawback to people who have just started to read Nevanlinna’s

Theory of Value Distribution is that this theory concerns many profound
results in complex analysis, meromorphic maps, analytic sets, complex ge-
ometry, etc. The author could not get over these obstacles unless there were
wholehearted instructions of his supervisor. On this occasion, the author
would like to express a deep gratitude to Prof. Do Duc Thai for his enthu-
siastic supervising and useful lectures he gave. The author would also like
to thank professors and lecturers at Faculty of Mathematics, Hanoi National
University of Education, Geometry Division, Seminars on complex geometry,
Seminars on Value Distribution Theory. The 2 author also thank referees who
spent their precious time for reading and giving helpful advices for his thesis.
At last, but most important the author is deeply grateful to his family. This
is a huge motivation both in morale and financial supports in helping author
to finish Master’s course in Hanoi.



Chapter 1

Value Distribution Theory in
several complex variables

1.1 Preliminaries

Let M be a n-dimensional complex manifold and let f : M → PN(C) be
a meromorphic map. Let p ∈ M and we denote the germ of all meromor-
phic functions at p by Mp. Let U be a neighborhood of local holomorphic
coordinates at p such that U is a Cousin domain II. Then f has a reduced
representation on U , i.e f = (f1 : . . . : fN+1 such that each fi is a holomorphic
function on U , with f := (f1, . . . , fN+1) 6≡ 0 and f(z) = (f1(z) : . . . : fN+1(z).
In addition, the set {z ∈ U : fi(z) = 0, 1 ≤ i ≤ N + 1} has co-dimension
which is higher than 1. With α = (α1, . . . , αn), αi is a non-positive integer,
we denote

Dαf =

(
∂|α|

∂zα1
1 . . . ∂zαnn

f1, . . . ,
∂|α|

∂zα1
1 . . . ∂zαnn

fN+1

)
∈MN+1

p ,

where D0f = (f1, . . . , fN+1). For each k ≥ 0, we denote Fkp aMp-submodule
of MN+1

p generated by {Dαf : |α| 5 k} and let F−1
p = {0}.

Proposition 1.1. The set Fkp does not depend on the chooses of local holo-
morphic coordinate systems and reduced representation f = (f1 : . . . : fN+1).

Proof. We prove by induction on k. It is easy to see that the proposition holds
for k = 0 as we have a biholomorphic between two local coordinate systems.
Suppose that the proposition holds for all |α| ≤ k. Let u = (u1, . . . , un) be
other local coordinates. We use the following notation

uDi =
∂

∂ui
, uDα =

∂|α|

∂uα1
1 . . . ∂uαnn

,
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with α = (α1, . . . , αn). We take an arbitrary α, with |α| = k + 1. We write

Dα = DiD
α
′
, where 1 ≤ i ≤ n and |α′ | = k. By the induction assumption,

we can write
uDα′f =

∑
|β|5k

hβD
βf,

where hβ ∈Mp. So we have

uDαf = uDi(
uDα′f)

= uDi

∑
|β|5k

hβD
βf


=
∑
|β|5k

(
uDihβD

βf +
n∑
j=1

hβ
∂zj
∂ui

DiD
βf

)
∈ Fk+1

p

This implies that Fk+1
p does not depend on choosing local holomorphic

coordinates.
Now we consider another reduced representation of f = (f̃1 : . . . : f̃N+1)

and let f̃ := (f̃1, . . . , f̃N+1). Then h = f̃i
fi

(i = 1, 2 . . . , N + 1) are nowhere

vanishing holomorphic functions. Let Dα = DiD
α
′
, with |α′| = k. By the

induction assumption we can write

Dα′ f̃ =
∑
|β|5k

gβD
βf,

where gβ ∈Mp with gβ ∈Mp. Therefore, we obtain

Dαf̃ = DiD
α′ f̃ = Di(

∑
|β|5k

gβD
βf) =

∑
|β|≤k

DigβD
βf +

∑
|β|5k

gβDiD
βf ∈ Fk+1

p .

This means Fk+1
p does not depend on choosing reduced representation of

f

Definition 1.1. We define a kth rank of f as follows

rf (k) := rankMpFkp − rankMpFk−1
p .

Definition 1.2. A total rank of f and a total rank of Jacobi matrix of f are
defined as

rf :=
∑
k=0

rf (k)− 1,
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and
lf :=

∑
k=0

krf (k)

respectively.

Proposition 1.2. 1. A meromorphic map f : M → PN(C) is non de-
generate, i.e. f(M) does not contain in any hyperplane of PN(C), iff
rf = N .

2. lf 5
N(N + 1)

2
for all meromorphic maps to PN(C).

Proof. First of all, we prove (1). Assume that f is degenerate, i.e. f1, . . . , fN+1

are linear dependent on C:

a1f1 + . . .+ aN+1fN+1 ≡ 0

where (a1, . . . , aN+1) 6= (0, . . . , 0). So, we have:

a1Dαf1 + . . .+ aN+1DαfN+1 ≡ 0, ∀α

=⇒ rankMpFkp = rankMp(D
αf : |α| 5 k) < N + 1,

for all k = 1, 2, . . .. Therefore, we get rf < N .
Conversely, suppose that rf < N ⇒ max

k=0
rankMpFkp < N + 1. Then,

there exist (ϕ1, . . . , ϕN+1) 6= (0, . . . , 0) in MN+1
p such that:

ϕ1D
αf1 + . . .+ ϕN+1D

αfN+1 ≡ 0,

for all α. Taking q ∈ M close enough to p such that ϕ1, . . . , ϕN+1 are
holomorphic in a neighborhood of q and (ϕ1(q), . . . , ϕN+1(q)) 6= (0, . . . , 0).
Let

ψ(z) = ϕ1(q)f1(z) + . . .+ ϕN+1(q)fN+1(z)

on U . Then, we have

(Dαψ)(q) = ϕ1(q)D
αf1(q) + . . .+ ϕN+1(q)D

αfN+1(q) = 0

for all α. By the identity theorem , we have ψ ≡ 0. This means that f is
degenerate.

Remark 1.1. By this proof we can see that f is non degenerate iff rankMpFk0p =
N + 1 with for some positive integer k0.

To prove (2), first we need to prove the following lemma
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Lemma 1.1. Let Fk+1
p = Fkp for some positive integer k. Then, we have⋃

k=0Fkp = Fkp .

Proof. Suppose that we have Fk+1
p = Fkp , we will prove Fk′p ⊂ Fkp for all

k′ > k by induction on k′. It is easy to see the case where k′ = k + 1.
Suppose that Fk′p ⊂ Fkp with k′ > k. Taking α with |α| = k′+1 and we write

Dα = DiD
α′ for some i and α′ with |α′| = k′. By the induction assumption

we can write
Dα′f =

∑
|β|5k

ϕα′βD
βf,

where ϕα′β ∈Mp. We have,

Dαf = DiD
α′f =

∑
|β|5k

Diϕα′βD
βf +

∑
|β|5k

ϕα′βDiD
βf ∈ Fk′p ⊂ Fkp .

This proves our statement.

Now we give the proof of (2).

Proof. We have
rankMpFkp 5 N + 1,∀k = 1, 2, . . . .

So, there is the smallest positive integer k1 such that

1 = rankMpF0
p < . . . < rankMpFk1−1

p < rankMpFk1p < N + 1

and rankMpFk1p = rankMpFk1+1
p . Therefore,

lf =
∑
k=0

krf (k) =

k1∑
k=1

k(rankMpFk1p − rankMpFk1−1
p )

= k1rankMpFk1p − (rankMpF0
p + . . .+ rankMpFk1−1

p )

5 k1(N + 1)− (1 + . . .+ k1)

=
N(N + 1)− (N − k1)

2 − (N − k1)

2
5
N(N + 1)

2
.

Now we consider a meromorphic map f from B(R0) := {z ∈ Cn : ‖z‖ <
R0}, (0 < R0 5 +∞) into PN(C), where ‖z‖ = (

∑n
i=1 ‖zi‖2)

1
2 with z =

(z1, . . . , zn) ∈ Cn. We use the following convention: B(∞) = Cn. Taking a
reduced representation f = (f1 : . . . : fN+1) in B(R0), we denote

‖f‖ = (|f1|2 + . . .+ |fN+1|2)
1
2 .
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By the definition, a pullback of Fubini metric form of f is given by

Ωf := ddc log ‖f‖2.

We denote υl = (ddc‖z‖2)l, σn = dc log ‖z‖2 ∧ (ddc log ‖z‖2)n−1 and S(r) =
{z ∈ Cn : ‖z‖ = r}.

Definition 1.3. A characteristic function f is defined as follows

Tf (r, r0) =

∫
S(r)

log ‖f‖σn −
∫
S(r0)

log ‖f‖σn.

Let φ be a non zero meromorphic function on B(R0). we can consider
φ as a meromorphic function into P 1(C). For each a ∈ P 1(C), we denote
the number of multiplicities of zero of φ− a at a point z ∈ B(R0) by νaφ(z).
Taking

naφ(r) =


1

r2n−2

∫
{φ=a}∩B(r)

νaφυn−1 if n > 1∑
z∈B(r)

νaφ(z) if n = 1
,

and determine a counting function of a by

Na
φ(r, r0) =

∫ r

r0

naφ(t)

t
dt (0 < r0 < r < R0).

So we obtain Jensen’s formula:∫
S(r)

log |φ|σn −
∫
S(r0)

log |φ|σn = N0
φ(r, r0)−N∞φ (r, r0). (1.1)

Let f : B(R0)→ PN(C) be a non-degenerate meromorphic function with
a reduced representation f = (f1 : . . . : fN+1) and let f = (f1, . . . , fN+1).

Definition 1.4. Let αi = (αi1, . . . , α
i
n) (1 5 i 5 N+1) be N+1 multi-indices

. A generalized Wronskian of f (or of f) is defined as

Wα1...αN+1(f) ≡ Wα1...αN+1(f) := det(Dαif : 1 5 i 5 N + 1).

Definition 1.5. We say that {α1, . . . , αN+1} (αi = (αi1, . . . , α
i
n)) is accept-

able of f (or f) if for each k = 0 {Dα1
f, . . . , Dαl(k)f} is a base of Mp-module

Fkp , where p ∈M and l(k) = rankMpFkp .

Proposition 1.3. Let f be non degenerate and let {α1, . . . , αN+1} be accept-
able of f . Then, we have

Wα1...αN+1(gf) = gN+1Wα1...αN+1(f)

for abitrary non-zero holomophic map g, where gf = (gf1, . . . , gfN+1).
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Proof. We prove by induction on |α|, for each α we can write

Dα(gf) = gDαf +
∑
|β|<|α|

aαβD
α−βgDβf, (1.2)

for some constants aαβ. We replace each Dαi(gf) in

Wα1...αN+1(gf) = det(Dαi(gf) : 1 5 i 5 N + 1)

by the right hand side of equation (1.2) with α = αi and repeat with an
addition of a multiple of another line we obtain

det(Dαi(gf)) = det(gDαif).

This proves our statement.

1.2 The lemma on logarithmic derivative

In this section, we prove the Lemma on logarithmic derivative [8].
Let ϕ(z1, . . . , zn) be a non-zero meromorphic function which onB(R0)(0 <

R0 5 +∞). Let α = (α1, . . . , αn) be a multi-index and let z = (z1, . . . , zn) ∈
Cn. We denote zα := zα1

1 . . . zαnn and Dαϕ = Dα1
1 . . . Dαn

n ϕ, where Diϕ =
∂

∂zi
ϕ. Then, we obtain the following theorem.

Theorem 1.1 (The lemma on logarithmic derivative). Let α = (α1, . . . , αn) 6=
(0, . . . , 0), 0 < r0 < R0. Taking positive integers p, p′ such that 0 < p|α| <
p′ < 1. Then, for r0 < r < R < R0, we have∫

S(r)

∣∣∣∣zα(Dαϕ

ϕ
(z)

)∣∣∣∣p σn(z) 5

(
R2n−1

R− r
Tϕ(R, r0)

)p′
,

where K is a constant which does not depend on r and R..

Corollary 1.1. Let α = (α1, . . . , αn) 6= (0, . . . , 0) and 0 < r0 < R0. Then,
for r0 < r < R < R0, we have∫

S(r)

log+ |(Dαϕ/ϕ)(z)|σn(z) 5 K log+

(
R2n−1

R− r
Tϕ(R, r0)

)
.

To prove Corollary 1.1 using Theorem 1.1, we use the following result by
Biancofiore and Stoll:

Let h = 0 be an integrable function on S(r). Then, we have
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∫
S(r)

log+ hσn 5 log+

∫
S(r)

hσn + log 2. (1.3)

To apply Theorem 1.1, we take p, p′ such that 0 < p|α| < p′ < 1. By
(1.2) and Theorem 1.1, we have

∫
S(r)

log+ |Dαϕ/ϕ|σn 5
1

p

∫
S(r)

log+ |zα(Dαϕ/ϕ)(z)|pσn(z) +K

5
1

p
log+

∫
S(r)

|zα(Dαϕ/ϕ)(z)|pσn(z) +K

5 K log+

(
R2n−1

R− r
Tϕ(R, r0)

)
.

Therefore, we obtain Corollary 1.1.
For the following part , we use K to denote a constant which does not

depend on r with r0 < r < R0 even if this constant is replaced by a new one.
Next, we will prove Theorem 1.1. First of all, we prove the following

lemma

Lemma 1.2. Let ϕ1, ϕ2 be non-zero mermorphic functions on B(R0). Then,
we have

Tϕ1ϕ2(r, r0) 5 Tϕ1(r, r0) + Tϕ2(r, r0) +K.

Proof. We take reduced representative points ϕi = (gi : hi) (i = 1, 2), and
ϕ1ϕ2 = (g3 : h3). Then, k := g1g2/g3 = h1h2/h3 are holomorphic. Since,

(|g1|2|g2|2 + |h1|2|h2|2) 5 (|g1|2 + |g2|2)(|h1|2 + |h2|2)

⇒ (|k|2|g3|2 + |k|2|h3|2) 5 (|g1|2 + |g2|2)(|h1|2 + |h2|2)
⇒ |k|(|g3|2 + |h3|2)1/2 5 (|g1|2 + |g2|2)1/2(|h1|2 + |h2|2)1/2

⇒ log(|g3|2 + |h3|2)1/2 + log |k| 5 log(|g1|2 + |h1|2)1/2 + log(|g2|2 + |h2|2)1/2,

we have∫
S(r)

log ‖ϕ1ϕ2‖σn 5
∫
S(r)

log ‖ϕ1‖σn +

∫
S(r)

log ‖ϕ2‖σn −Nk(r, r0) +K.

Therefore, we get∫
S(r)

log ‖ϕ1ϕ2‖σn 5
∫
S(r)

log ‖ϕ1‖σn +

∫
S(r)

log ‖ϕ2‖σn +K,

that means
Tϕ1ϕ2(r, r0) 5 Tϕ1(r, r0) + Tϕ2(r, r0) +K.

This prove our lemma
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Lemma 1.3. Let ϕ be a non-zero meromorphic function on B(R0) with a
reduced representative ϕ = g/h(= (g : h)). Then, we have∫

S(r)

| log |ϕ||σn 5 2Tϕ(r, r0) +K.

Proof. Since

| log |ϕ|| =
∣∣∣∣log
|g|
|h|

∣∣∣∣ = | log |g| − log |h||

= 2 max(log |g|, log |h|)− log |g| − log |h|
5 2 log ‖ϕ‖ − log |g| − log |h|,

we have∫
S(r)

| log |ϕ||σn 5 2

∫
S(r)

log ‖ϕ‖σn −
∫
S(r)

log |g|σn −
∫
S(r)

log |h|σn

5 2Tϕ(r, r0)−Ng(r, r0)−Nh(r, r0) +K

5 2Tϕ(r, r0) +K.

Lemma 1.4. Na
ϕ(r, r0) 5 Tϕ(r, r0) +K for all a ∈ P 1(C).

Proof. Let a = (a1 : a2) ∈ P 1(C), we have

Na
ϕ(r, r0) =

∫
S(r)

log |a2g − a1h|σn −
∫
S(r0)

log |a2g − a1h|σn

5
∫
S(r)

log ‖ϕ‖σn +K

5 Tϕ(r, r0) +K.

Lemma 1.5.∣∣∣∣Tϕ(r, r0)−
(∫

S(r)

log+ |ϕ|σn +N∞ϕ (r, r0)

)∣∣∣∣ 5 K,

where log+ = max(log x, 0) with x = 0.
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Proof. We have

log ‖ϕ‖ = log(|g|2 + |h|2)1/2

5 log(2 max(|g|, |h|))

= log+
∣∣∣g
h

∣∣∣+ log |h|+ log 2

⇒
∫
S(r)

log ‖ϕ‖σn 5
∫
S(r)

log+ |ϕ|σn +

∫
S(r)

log |h|σn +K,

therefore

Tϕ(r, r0)−
(∫

S(r)

log+ |ϕ|σn +N∞ϕ (r, r0)

)
5 K.

On the other hand, we have

log+ |ϕ|+ log |h|+ log 2 = log(2 max(|g|, |h|))
= log(max(|g|, |h|)) + log 2

5 log(|g|2 + |h|2)1/2 +K

= log ‖ϕ‖+K,

thus (∫
S(r)

log+ |ϕ|σn +N∞ϕ (r, r0)

)
− Tϕ(r, r0) 5 K.

This proves Lemma 1.5

Lemma 1.6. Let 0 < r0 < r < R < R0 and let ρ := (r + R)/2. Then, we
have

nνaϕ(ρ) 5
2R

R− r
(Tϕ(R, r0) +K).

Proof. By definition, we have

Na
ϕ(R, r0) =

∫ R

r0

nνaϕ(t)
dt

t
=
∫ R

ρ

nνaϕ(t)
dt

t
= nνaϕ(ρ)

R− ρ
R

,

so we obtain

nνaϕ(ρ) 5
R

R− ρ
Na
ϕ(R, r0) 5

2R

R− r
(Tϕ(R, r0) +K) ( by Lemma 1.4).
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Lemma 1.7. Let r > 0 and 0 < p < 1. For all a ∈ C, we have

1

2π

∫ 2π

0

rp

|reiθ − a|p
dθ 5

2− p
2(1− p)

.

Proof. Without loss of generation, we can assume that a is a real positive

number. If |θ| 5 π

2
, we have

|reiθ − a| = r| sin θ| = 2

π

and if π/2 < |θ| 5 π, we get |reiθ − a| = r. Therefore, we obtain∫ 2π

0

rp

|reiθ − a|p
dθ 5 2

∫ π/2

0

( π
2θ

)p
dθ + 2

∫ π

π/2

dθ

5
21−pπp

1− p

(π
2

)1−p
+ π

=
π(2− p)

1− p
.

This implies
1

2π

∫ 2π

0

rp

|reiθ − a|p
dθ 5

2− p
2(1− p)

.

Proposition 1.4 ([11]). Let ϕ be a non-zero meromorphic function on {u ∈
C : |u| < R0} and let 0 < r < R < R0. We take z ∈ C such that |z| = r and
ϕ(z) 6= 0,∞. Then, we have

log |ϕ(z)| = 1

2π

∫ 2π

0

log |ϕ(Reiφ)|Re
(
Reiφ + z

Reiφ − z

)
dφ+

∑
|u|5R

νϕ(u) log

∣∣∣∣R(z − u)

R2 − ūz

∣∣∣∣ ,
where z = (z1, . . . , zn) ∈ Cn, η = (z1, . . . , zn−1), ζ = zn, z = (η, ζ) and
|η| = (|z1|2 + . . .+ |zn−1|2)1/2.

Lemma 1.8. Let h be an integrable function on S(r) (r > 0). Then, we have∫
S(r)

hσn =
1

r2n−2

∫
B̃(r)

υn−1(η)

∫
|ζ|=
√
r2−|η|2

h(η, ζ)σ1(ζ),

where B̃(r) := {η ∈ Cn−1 : |η| < r}.



Value Distribution Theory in several complex variables 15

For a non-zero meromorphic function ϕ on n B(R0), there exists a zero-

measure subset E of B̃(R0) such that for each η ∈ B̃(R0)\E, a meromorphic
function (ϕ|η)(ζ) = ϕ(η, ζ) is well defined on {ζ ∈ C : |ζ| <

√
R2

0 − |η|2}.

Lemma 1.9. For all a ∈ P 1(C) and 0 < r < R0, we have

1

r2n−2

∫
B̃(r)\E

nνa
ϕ|η

(
√
r2 − |η|2)υn−1(η) 5 nνaϕ(r).

Lemma 1.10. Let 0 < p̃ < 1 and let 0 < r < ρ < R0. For all η ∈ B̃(r) \ E,
we have

∫
|ζ|=
√
r2−|η|2

∣∣∣∣ζ ( ∂ϕ∂ζ
/
ϕ

)
(η, ζ)

∣∣∣∣p̃ σ1(ζ) 5

(
ρ

ρ− r

∫
|ζ|=
√
ρ2−|η|2

| log |ϕ(η, ζ)||σ1(ζ)

)p̃

+K(nν0
ϕ
(
√
ρ2 − |η|2) + nν∞ϕ (

√
ρ2 − |η|2)).

Proof. We can assume that ϕ(ζ) 6= 0,∞ on {ζ : |ζ| =
√
ρ2 − |η|2}, as each

element is continuous with respect to ρ. By taking derivatives in Proposition
1.4 with application on functions ϕ|η and R = ρ̃ :=

√
ρ2 − |η|2, we obtain

(
∂ϕ

∂ζ

/
ϕ

)
(η, ζ) =

ρ̃

π

∫ 2π

0

log |ϕ(η, ρ̃eiφ)|eiφ

(ρ̃eiφ − ζ)2
dφ−

∑
|u|5ρ̃

νϕ|η(u)

{
1

u− ζ
− ū

ρ̃2 − ūζ

}
.

Therefore, we have

∣∣∣∣ζ ( ∂ϕ∂ζ
/
ϕ

)
(η, ζ)

∣∣∣∣ρ̃ 5

(
2ρ̃|ζ|

∫
|u|=ρ̃

| log |ϕ(η, ζ)||
|u− ζ|2

σ1(u)

)ρ̃
+
∑
|u|5ρ̃

(ν0
ϕ|η(u) + ν∞ϕ|η(u))

((
|ζ|
|u− ζ|

)ρ̃
+

(
|ζ||u|
|ρ̃2 − ūζ|

)ρ̃)
.

Taking integral and using Lemma 1.7, we can see that
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∫
|ζ|=
√
r2−|η|2

∣∣∣∣ζ ( ∂ϕ∂ζ
/
ϕ

)
(η, ζ)

∣∣∣∣ρ̃ σ1(ζ)

5

(
2ρ̃

∫
|ζ|=
√
r2−|η|2

|ζ|σ1(ζ)

∫
|u|=ρ̃

| log |ϕ(η, ζ)||
|u− ζ|2

σ1(u)

)ρ̃

+
∑
|u|5ρ̃

(ν0
ϕ|η(u) + ν∞ϕ|η(u))

∫
|ζ|=
√
r2−|η|2

(
|ζ|ρ̃

|u− ζ|ρ̃
+

|ζ|ρ̃

|(ρ̃2/u)− ζ|ρ̃

)
σ1(ζ)

5

(
2rρ

∫
|u|5ρ̃
| log |ϕ(η, ζ)||σ1(u)

∫
|ζ|=
√
r2−|η|2

1

|u− ζ|2
σ1(ζ)

)ρ̃

+K

∑
|u|5ρ̃

(ν0
ϕ|η(u) + ν∞ϕ|η(u))

 .

On the other hand, we have∫
|ζ|=
√
r2−|η|2

1

|u− ζ|2
σ1(ζ) =

∫
|ζ|=
√
r2−|η|2

1

|u− ζ|2
dc log |ζ|2

=
1

2π

∫ 2π

0

1

|u− ζ|2
dϕ (do dc log |ζ| = 1

4π
dϕ)

=
1

ρ̃2 − (r2 − |η|2)

=
1

(ρ2 − |η|2)− (r2 − |η|2)

=
1

ρ2 − r2

for all u such that |u| = ρ̃. Thus, we get

∫
|ζ|=
√
r2−|η|2

∣∣∣∣ζ ( ∂ϕ∂ζ
/
ϕ

)
(η, ζ)

∣∣∣∣ρ̃ σ1(ζ)

5

(
2rρ

ρ2 − r2

∫
|u|=ρ̃
| log |ϕ(η, u)||σ1(u)

)ρ̃
+K(nν0

ϕ|η
(ρ̃) + nν∞

ϕ|η
(ρ̃)),

and since 0 < r < ρ < R0 we have
2rρ

ρ2 − r2
5

ρ

ρ− r
. Substituting on the



Value Distribution Theory in several complex variables 17

above inequality, we obtain∫
|ζ|=
√
r2−|η|2

∣∣∣∣ζ ( ∂ϕ∂ζ
/
ϕ

)
(η, ζ)

∣∣∣∣p̃ σ1(ζ) 5

(
ρ

ρ− r

∫
|ζ|=
√
ρ2−|η|2

| log |ϕ(η, ζ)||σ1(ζ)

)p̃

+K(nν0
ϕ
(
√
ρ2 − |η|2) + nν∞ϕ (

√
ρ2 − |η|2)).

This prove Lemma 1.10.

Now we prove Theorem 1.1 for the case where |α| = 1. We prove by
induction on |α|. First of all, we consider the case where |α| = 1. Without
loss of generation we can assume that Dα = Dn. Let r0 < r < R < R0, 0 <
p < p′ < 1 and let p̃ = p/p′, ρ = (r + R)/2. Since the degree of each pole
of Dnϕ/ϕ is less or equal 1, |zn(Dnϕ/ϕ)(z)|ρ̃ is integrable on S(r). Using
Lemmas 1.8, 1.9, 1.10 and Hölder inequality we have

∫
S(r)

|zn(Dnϕ/ϕ)(z)|ρ̃σn(z)
1.8
=

1

r2n−2

∫
|η|5r

υn−1(η)

∫
|ζ|=
√
r2−|η|2

|ζ(Dnϕ/ϕ)(η, ζ)|p̃σ1(ζ)

1.10

5
1

r2n−2

(
ρ

ρ− r

)p̃(∫
|η|5r

υn−1(η)

)1−p̃

×

(∫
|η|5r

υn−1(η)

∫
|ζ|=
√
r2−|η|2

| log |ϕ(η, ζ)||σ1(ζ)

)p̃

+
K

r2n−2

∫
|η|5r

(nν0
ϕ|η

(
√
ρ2 − |η|2) + nν∞

ϕ|η
(
√
ρ2 − |η|2))υn−1(η)

1.9

5

(
ρ

ρ− r

∫
S(ρ)

| log |ϕ||σn
)p̃

+K
(ρ
r

)2n−2

(nν0
ϕ|η

(p) + nν∞
ϕ|η

(p)).

Moreover, using Lemmas 1.3, 1.6, we obtain

∫
S(r)

|zn(Dnϕ/ϕ)(z)|pσn(z) 5

(∫
S(r)

|zn(Dnϕ/ϕ)(z)|ρ̃σn(z)

)p′
1.10

5

(
ρ

ρ− r

∫
S(ρ)

| log |ϕ||σn
)p̃p′

+K
(ρ
r

)2n−2

(nν0
ϕ
(p)p

′
+ nν∞ϕ (p)p

′
)

1.6

5

(
2R

R− r

∫
S(ρ)

| log |ϕ||σn
)p

+K

(
4R2n−1

R− r
(Tϕ(R, r0) +K)

)p′
1.3

5 K

(
R2n−1

R− r
Tϕ(r, r0)

)p′
.
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Thus the case where Dα = Dn of Theorem 1.1 is proved.
To complete the proof of Theorem 1.1, we need the following lemma

Lemma 1.11. Let ϕ be a non-zero meromorphic function on B(R0) and let
0 < r0 < r < R < R0. Then, we have

TDiϕ(r, r0) 5 3Tϕ(r, r0) +K log+

(
R2n−1

R− r
Tϕ(R, r0)

)
,

with i = 1, 2, . . . , n.

Proof. Since ϕ is meromorphic on B(R0), using Lemma 1.2 with two mero-
morphic functions Diϕ/ϕ and ϕ we obtain:

TDiϕ(r, r0) 5 TDiϕ/ϕ(r, r0) + Tϕ(r, r0) +K

Next, using Lemma 1.5 we have:

TDiϕ/ϕ(r, r0) 5
∫
S(r)

log+ |Diϕ/ϕ|σn +N∞Diϕ/ϕ(r, r0) +K.

Therefore,

TDiϕ(r, r0) 5
∫
S(r)

log+ |Diϕ/ϕ|σn +N∞Diϕ/ϕ(r, r0) + Tϕ(r, r0) +K. (1)

On the other hand, since ν∞Diϕ/ϕ 5 ν∞ϕ + ν0
ϕ and using Lemma 1.4, we get

N∞Diϕ/ϕ(r, r0) 5 N∞ϕ (r, r0) +N0
ϕ(r, r0)

1.4

5 2Tϕ(r, r0) +K (2).

As we already proved Theorem 1.1 for the case where |α| = 1, we can use
Corollary 1.1 in this case. Thus, we have∫

S(r)

log+ |Diϕ/ϕ|σn 5 K log+

(
R2n−1

R− r
Tϕ(R, r0)

)
. (3)

From (1), (2) and (3), we get:

TDiϕ(r, r0) 5 3Tϕ(r, r0) +K log+

(
R2n−1

R− r
Tϕ(R, r0)

)
.

Lemma is proved 1.11.
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Now we prove Theorem 1.1 in a general case. Suppose that Theorem 1.1
holds for all α such that |α| 5 k. We take α satisfying |α| = k + 1 and
write Dα = Dα′Di, where 1 5 i 5 n and |α′| = k. Then, we have Dαϕ/ϕ =
(Diϕ/ϕ)(Dα′(Diϕ)/Diϕ), zα = ziz

α′ and |α|p = (|α′| + 1)p < p′ < 1. Let
p1 := 1/(|α′|+ 1) and p2 := |α′|/(|α′|+ 1). By using Hölder’s inequality and
the induction assumption, we get∫
S(r)

|zα(Dαϕ/ϕ)(z)|pσn(z)

5

(∫
S(r)

|zi(Diϕ/ϕ)(z)|p/p1σn(z)

)p1 (∫
S(r)

|zα′(Dα′(Diϕ)/Diϕ)(z)|p/p2σn(z)

)p2
5 K

(
R2n−1

R− r
Tϕ(R, r0)

)p′p1 (R2n−1

R− r
TDiϕ(R, r0)

)p′p2
.

On the other hand, as limx→∞
log x

xα
= 0 for arbitrary ε > 0, there exists

a constant Kε such that

log+

(
R2n−1

R− r
Tϕ(R, r0)

)
5 Kε

(
R2n−1

R− r
Tϕ(R, r0)

)ε
.

Using Lemma 1.11, we have:

(
R2n−1

R− r
TDiϕ(R, r0)

)p′p2
5

(
R2n−1

R− r

(
3Tϕ(R, r0) +Kε

(
R2n−1

R− r
Tϕ(R, r0)

)ε))p′p2
5 K

(
R2n−1

R− r
Tϕ(R, r0)

)ε1
.

We choose ε which is small enough to satisfy ε1 5
|α′|p′

|α′|+ 1
. We get (ε1 +

p′p1) 5 p′. Therefore, we obtain∫
S(r)

|zα(Dαϕ/ϕ)(z)|pσn(z) 5 K

(
R2n−1

R− r
Tϕ(R, r0)

)p′
.

This proves Theorem 1.1.

1.3 The second main theorem

Now we consider q (= N + 2) hyperplanes

Hj : a1
jw1 + . . .+ aN+1

j wN+1 = 0 (1 5 j 5 q)
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in PN(C) in a general position and let

Fj = a1
jf1 + . . .+ aN+1

j fN+1 (1 5 j 5 q).

Let {α1, . . . , αN+1} be acceptable of f . We define

φ :=
Wα1...αN+1(f)

F1F2 . . . Fq
,

which is a meromorphic function on B(R0). We have

Proposition 1.5. Let 0 < r0 < R0 and let 0 < lf t < p′ < 1. Then, there
exists a constant K > 0 such that r0 < r < R < R0∫

S(r)

|zα1+...+αN+1

φ|t‖f‖t(q−N−1)σn 5 K

(
R2n−1

R− r
Tf (R, r0)

)p′
,

where zα = zα1
1 . . . zαnn with z = (z1, . . . , zn) and α = (α1, . . . , αn).

To prove Lemma 1.5, we represent here the following lemmas.

Lemma 1.12. Let (a1
i , . . . , a

N+1
i ) ∈ CN+1 (i = 1, 2), suppose that Fi :=

a1
i f1 + . . . + aN+1

i fN+1 6≡ 0 let ϕ :=
F1

F2

. Assume that ϕ is a meromorphic

function into P1(C), we have

Tϕ(r, r0) 5 Tf (r, r0) +K.

Proof. With a reduced representation ϕ = (g : h) on B(R0), k :=
F1

g
=
F2

h
is a non-zero meromorphic function. We have,

‖ϕ‖2|k|2 = (|g|2 + |h|2)|k|2 = |F1|2 + |F2|2 5 K‖f‖2.

Therefore, we get∫
S(r)

log ‖ϕ‖σn +

∫
S(r)

log |k|σn 5
∫
S(r)

log ‖f‖σn,

where we have used the following∫
S(r)

log |k|σn = Nk(r, r0) +

∫
S(r0)

log |k|σn =
∫
S(r0)

log |k|σn.

We prove our statement.
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Lemma 1.13. There exists a constant K such that∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣ ‖f‖q−N−1 5 K

 ∑
15j1<...<jN+15q

∣∣∣∣Wα1...αN+1
(Fj1 , . . . , FjN+1

)

Fj1 . . . FjN+1

∣∣∣∣
 .

Proof. We take an arbitrary point z ∈ B(R0). Let i1, . . . , iq be a permutation
of 1, 2, . . . , q such that

|Fi1(z)| 5 . . . 5 |FiN+1
(z)| 5 |FiN+2

(z)| 5 . . . 5 |Fiq(z)|.

Since H1, . . . , Hq are at general position, f1, . . . , fN+1 are expressed linearly
through Fi1 , . . . , FiN+1

. Therefore, we can find Ci1...iN+1
independently with z

such that

|fi(z)| 5 Ci1...iN+1
max

15k5N+1
|Fik(z)| 5 Ci1...iN+1

|Fil(z)|

where i = 1, . . . , N + 1 and l = N + 2, . . . , q. So we have

‖f(z)‖ =

(
N+1∑
i=1

|fi(z)|2
)1/2

5 (N + 1)1/2Ci1...iN+1
|Fil(z)|

where l = N + 2, . . . , q. Thus, we get

‖f(z)‖q−N−1 5 K1|FiN+2
(z) . . . Fiq(z)|,

where K1 = ((N + 1)1/2)Cq−N−1
i1...iN+1

. On the other hand, we see that

Wα1...αN+1(f) := ai1...iN+1
Wα1...αN+1(Fi1 , . . . , FiN+1

)

with constant ai1...iN+1
:= det(ajik : 1 5 j, k 5 N + 1)−1. Let

K := max
15i1<...<iN+15q

Ci1...iN+1
|ai1...iN+1

|,

we have

∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq
(z)

∣∣∣∣ ‖f(z)‖q−N−1 5 Ci1...iN+1
|ai1...iN+1

|
∣∣∣∣Wα1...αN+1(Fi1 , . . . , FiN+1

)FiN+2
. . . Fiq

F1F2 . . . Fq
(z)

∣∣∣∣
5 K

∣∣∣∣Wα1...αN+1(Fi1 , . . . , FiN+1
)

Fi1 . . . FiN+1

(z)

∣∣∣∣
5 K

 ∑
15i1<...<iN+15q

∣∣∣∣Wα1...αN+1(Fi1 , . . . , FiN+1
)

Fi1 . . . FiN+1

(z)

∣∣∣∣
 .

This prove our statement.
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Now we prove Lemma 1.5

Proof. We denote l(k) = rankMpFkp . Then, by Remark 1.1 there is an integer
number k0 such that l(k0) = N + 1,

lf =
∑
k=0

krf (k)

=

k0∑
k=0

krf (k)

= (l(k0)− l(k0 − 1)) + (l(k0)− l(k0 − 2)) + . . .+ (l(k0)− l(0))

= γk0−1 + . . .+ γ0 with γj = (l(k0)− l(k0 − kj)).

Without loss of generation, we take γj = (γj, 0, . . . , 0),∀j = 0, 1, . . . , k0−
1. By Lemma 1.13, we have∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣ ‖f‖q−N−1 5 K

 ∑
15j1<...<jN+15q

∣∣∣∣Wα1...αN+1(Fj1 , . . . , FjN+1
)

Fj1 . . . FjN+1

∣∣∣∣
 ,

where K is constant. On the other hand, let α = α1 + . . .+ αN+1 then

I :=

∫
S(r)

∣∣∣∣zαWα1...αN+1(Fj1 , . . . , FjN+1
)

Fj1 . . . FjN+1

∣∣∣∣t σn 5
∫
S(r)

∣∣zα−lf ∣∣t ∣∣∣∣zlfWα1...αN+1(Fj1 , . . . , FjN+1
)

Fj1 . . . FjN+1

∣∣∣∣t σn
5 K

∫
S(r)

∣∣∣∣zlfWα1...αN+1(Fj1 , . . . , FjN+1
)

Fj1 . . . FjN+1

∣∣∣∣t σn.
So we only consider the following term:∫

S(r)

∣∣∣∣zγ0+...+γk0−1
Wα1...αN+1(Fj1 , . . . , FjN+1

)

Fj1 . . . FjN+1

∣∣∣∣t σn,
with 1 5 j1 < . . . < jN+1 5 q. The expression under the integral sign can be
approximated by multiples of positive constant of sums of functions which
have the following form

ψi0...ik0−1
:=

∣∣∣∣∣zγ0+...+γk0−1
Dγ0ϕi0
ϕi0

. . .
Dγk0−1ϕik0−1

ϕik0−1

∣∣∣∣∣
t

,

where ϕi =
Fi
F1

(1 5 i 5 q) and 1 5 i0, . . . , ik0−1 5 q.
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Denote pj =
γj
lf

with 0 5 j 5 k0− 1. By the Hölder’s inequality, we have:

∫
S(r)

ψi0...ik0−1
σn 5

k0−1∏
j=0

(∫
S(r)

∣∣∣∣zγjDγjϕij
ϕij

∣∣∣∣ tpj σn
)pj

.

We see that ( t
pj

)|γj| = (γ0 + . . .+γk0−1)t = lf t < p′ < 1 where 0 5 j 5 k0−1,

using the Lemma on logarithmic derivative we obtain

∫
S(r)

ψi0...ik0−1
σn 5 K

k0−1∏
j=0

(
R2n−1

R− r
Tϕij (R, r0)

)p′pj
.

On the other hand, using Lemma 1.12, we get

Tϕi(r, r0) 5 Tf (r, r0) +K,

for all i = 1, 2, . . . , q. Thus, we have

I 5 K

(
R2n−1

R− r
Tf (R, r0)

)p′
.

For real-valued functions f(r) and g(r) on [r0, R0) we denote ‖f(r) 5 g(r),
i.e. f(r) 5 g(r) on [r0, R0) except for a set E such that

∫
E
dr <∞ if R0 =∞

and
∫
E

(R0− r)1dr <∞ if R0 <∞. By Lemma 1.5 we have the Second main
theorem which is stated as follows.

Theorem 1.2 (The second main theorem). Let f : B(R0) → PN(C) be a
non-degenerate meromorphic function and let H1, . . . , Hq be hyperplanes at
general position. Then, we have

(q −N − 1)Tf (r, r0) 5 N∞φ (r, r0) + Sf (r),

where there exists a constant K satisfying

‖Sf (r) 5 lf log
1

R0 − r
+K log+ Tf (r, r0) if R0 <∞,

‖Sf (r) 5 K(log+ Tf (r, r0) + log r) if R0 =∞.
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Proof. By Lemma 1.5 and the convexity of a logarith function, we have

t

∫
S(r)

log
∣∣∣zα1+...+αN+1

∣∣∣σn + t

∫
S(r)

log

∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣σn
+ t(q −N − 1)

∫
S(r)

log ‖f‖σn

5 log

∫
S(r)

∣∣∣∣zα1+...+αN+1Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣t ‖f‖t(q−N−1)σn

5 logK + p′ log

(
R2n−1

R− r
Tf (R, r0)

)
= logK + p′

(
R2n−2 log

R

R− r
+ log Tf (R, r0)

)
5 K

(
log+ R

R− r
+ log+ Tf (R, r0)

)
.

Using Jensen’s formula, we get

−N∞φ (r, r0) 5
∫
S(r)

log

∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣σn
⇒ −

∫
S(r)

log

∣∣∣∣Wα1...αN+1(f)

F1 . . . Fq

∣∣∣∣σn 5 N∞φ (r, r0).

On the other hand, we have

Tf (r, r0) =

∫
S(r)

log ‖f‖σn −
∫
S(r0)

log ‖f‖σn.

Therefore,

(q −N − 1)Tf (r, r0) 5 N∞φ (r, r0) +K(log+ R

R− r
+ log+ Tf (R, r0)).

Let

Sf (r) = K(log+ R

R− r
+ log+ Tf (R, r0)). (∗)

Since Tf (r, r0) is a continuous ,increasing function and we can assume that
Tf (r, r0) = 1. Using Lemma 2.4 in Hayman, we obtain:

Tf

(
r +

R0 − r
eTf (r, r0)

, r0

)
5 2Tf (r, r0)
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except for a set E such that
∫
E

1
R0−rdr <∞ and

Tf

(
r +

1

Tf (r, r0)
, r0

)
< 2Tf (r, r0)

except for the set E ′ such that
∫
E
dr <∞ in the case where R0 =∞.

Substituting in (*) R = r +
1

Tf (r, r0)
, if R0 =∞ we have:

‖Sf (r) = K

(
log r + log(rTf (r, r0) + 1) + log+ Tf (r +

1

Tf (r, r0)
, r0)

)
5 K

(
log r + log+ Tf (r, r0)

)
.

If R0 <∞, thay R = r +
R0 − r
eTf (r, r0)

, we obtain:

‖Sf (r) = K

(
log+ reTf (r, r0) +R0 − r

R0 − r
+ log+ Tf

(
r +

R0 − r
eTf (r, r0)

, r0

))
5 K

(
log+ reTf (r, r0) + log 2 + log

1

R0 − r
+ log+ Tf (r, r0)

)
5 lf log

1

R0 − r
+K log+ Tf (r, r0).

Notation 1.1. In Theorem 1.2, if R0 = ∞ and limr→∞
Tf (r,r0)

log r
< ∞, or

equivalently f is rational, then we can choose Sf (r) such that it is bounded.
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